Home
Syllabus
Homework
Projects
Timetable
Textbooks
Notes (pdf format)
The QT Group
|
PROJECTS
You need to do a project
on a topic of your choice selected after consultation with the
Instructor, write a paper on it and present it in class at the
end of the semester. This is not meant to be original work. You just
need to understand a certain subject described in one of the recommended
textbooks
and not covered in class, or in a research paper you happen to be interested in.
DEADLINES
- Consult with Instructor and agree on scope of project by Fri., Feb. 1
- First draft due by Fri., Mar. 29
- Paper due by Fri., Apr. 26
- Presentations Fri., May 3 (10:15 a.m. - 12:15 p.m.)
LIST OF PROJECTS
Name
|
Title
|
References
|
Presentation
|
Trevor Keen
|
Exact Diagonalization and Dynamical Mean Field Theory
|
G. Kotliar and D. Vollhardt, Strongly Correlated Materials: Insights From Dynamical Mean-Field Theory,
Physics Today 57, 53 (2004).
A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys. 68, 13 (1996).
A. Liebsch and H. Ishida, Temperature and bath size in exact diagonalization dynamical mean field theory, J. Phys.: Condens. Matter, 24, 053201 (2012).
|
10:15 am |
Chinmay Mishra
&
Shane Thompson
|
AdS/CFT Correspondence and an Application
|
M. Natsuume, AdS/CFT Duality User Guide, arXiv:1409.3575 [hep-th].
D. T. Son and A. O. Starinets, Viscosity, Black Holes, and Quantum Field Theory, arXiv:0704.0240 [hep-th].
|
10:35 am |
Austin Schmier
|
Parton energy loss in the quark-gluon plasma
|
The JET Collaboration, Extracting jet transport coefficient from jet quenching at RHIC and LHC, arXiv:1312.5003 [nucl-th].
A. Majumder, A comparative study of Jet-quenching Schemes, arXiv:nucl-th/0702066.
|
11:15 am |
Zichao Yang
|
Few-body applications of effective field theories
|
H.-W. Hammer and S. König, General aspects of effective field theories and few-body applications, arXiv:1610.02961 [nucl-th].
|
11:35 am |
PAST PROJECTS
Name
|
Title
|
References
|
Himal Acharya
|
Double vector quarkonia production in exclusive Higgs boson decays
|
V. Kartvelishvili, A. V. Luchinsky, and A. A. Novoselov, Double vector quarkonia production in exclusive Higgs boson decays, arXiv:0810.0953 [hep-ph].
G. T. Bodwin, F. Petriello, S. Stoynev, and M. Velasco, Higgs boson decays to quarkonia and the Hccbar coupling, arXiv:1306.5770 [hep-ph].
|
Mohammad Al-Mamun
|
Neutrino Interactions in Hot and Dense Matter
|
S. Reddy, M. Prakash, and J. M. Lattimer, Neutrino Interactions in Hot and Dense Matter, arXiv:astro-ph/9710115.
|
Jonathan M. Clark
|
Spacetime, entanglement, and the ER = EPR conjecture
|
M. Van Raamsdonk, Building up spacetime with quantum entanglement, arXiv:1005.3035 [hep-th].
J. Maldacena and L. Susskind, Cool horizons for entangled black holes, arXiv:1306.0533 [hep-th].
L. Susskind, Copenhagen vs Everett, Teleportation, and ER=EPR, arXiv:1604.02589 [hep-th].
|
Charles P. Hughes
|
Hawking-Unruh Tenperature
|
P. M. Alsing and P. W. Milonni, Simplified derivation of the Hawking–Unruh temperature for an accelerated observer in
vacuum, American Journal of Physics 72, 1524 (2004).
K. T. McDonald, Hawking-Unruh Radiation
and Radiation of a Uniformly Accelerated Charge (1998).
P. Castorina, A. Iorioc, and H. Satz, Hadron Freeze-Out and Unruh Radiation, arXiv:1409.3104 [hep-ph].
|
Ilias Kokkas
|
The infrared triangle
|
A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [hep-th].
D. Kapec, M. Pate, and A. Strominger, New Symmetries of QED, arXiv:1506.02906 [hep-th].
D. Kapec, M. Perry, A.-M. Raclariu, and A. Strominger, Infrared Divergences in QED, Revisited, arXiv:1705.04311 [hep-th].
|
Aaron M. Lackey-Stewart
|
Semiclassical approaches are inconsistent
|
A. Luis and G. Garcia, Semiclassical approaches are inconsistent, arXiv:1801.03642 [quant-ph].
|
Chinmay Mishra
|
Extracting Entanglement from a Quantum Field Vacuum
|
A. Valentini, Non-local correlations in quantum electrodynamics, Phys. Lett. A 153, 321 (1991).
B. Reznik, Entanglement from the Vacuum, Foundations of Physics, 33, 167 (2003).
A. Pozas-Kerstjens and E. Martín-Martínez, Harvesting correlations from the quantum vacuum, Phys. Rev. D 92, 064042 (2015).
K. Bradler, G. Siopsis, and A. Wozniakowski, Covert Quantum Internet, arXiv:1704.07281 [quant-ph].
|
Hao Zhang
|
Spin wave interactions on triangular lattice
|
M. E. Zhitomirsky and A. L. Chernyshev, Colloquium: Spontaneous magnon decays Rev. Mod. Phys. 85, 219 (2013).
|
Joshua L. Barrow
|
Neutron-Antineutron Oscillation Time Predictions at Tree Level
|
- Post-sphaleron baryogenesis and an upper limit on the neutron-antineutron oscillation time, K. S. Babu, et al., Phys. Rev. D 87, 115019 (2013).
- Postsphaleron Baryogenesis, K. S. Babu, R. N. Mohapatra, and S. Nasri, Phys. Rev. Lett. 97, 131301 (2006).
- Neutron-Antineutron Operator Renormalization, M. I. Buchoff and M. Wagman, Proc. Of Sci, The 32nd Int. Symp. On Lattice Field Theory, June 2014.
- Perturbative renormalization of neutron-antineutron operators, M. I. Buchoff and M. Wagman, Phys. Rev. D 93, 016005 (2016).
|
Daniel E. Castillo
|
Fault-tolerant quantum computation by anyons
|
Fault-tolerant quantum computation by anyons, A. Yu. Kitaev, Annals Phys. 303 (2003) 2-30; arXiv:quant-ph/9707021.
|
Jimmy P. Caylor
|
Electric dipole moment of the neutron
|
The neutron and its role in cosmology and particle physics, D. Dubbers and M. G. Schmidt,
Rev. Mod. Phys. 83, 1111 (2011).
|
Casey J. Eichstaedt
|
Renormalization in constructing low-energy effective model Hamiltonian for real materials from first principles electronic structure calculations
|
Frequency-dependent local interactions and low-energy effective models from electronic
structure calculations, F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, and A. I. Lichtenstein, Phys. Rev. B 70, 195104 (2004).
Inhomogenous electron gas, P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
|
Joseph N. Heideman
|
Higgs Boson Decay with Quarkonia Production
|
Double vector quarkonia production in exclusive Higgs boson decays, V. Kartvelishvili, A. V. Luchinsky, and A. A. Novoselov, Phys. Rev. D 79, 114015 (2009);
arXiv:0810.0953 [hep-ph].
|
William E. Witt
|
Deep Inelastic Scattering
|
An Introduction to Quantum Field Theory, by Michael E. Peskin and Daniel V. Schroeder, Addison Wesley - Chapter 17.
|
Brandon L. Cathey
|
Hawking Radiation
|
Modeling Black Hole Evaporation, A. Fabbri and J. Navarro-Salas, Imperial College Press.
|
Samuel B. Emmons
|
Deep Inelastic scattering
|
Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion, J. C. Collins, Cambridge Monographs on Mathematical Physics.
|
Blaine A. Heffron
|
Quantum Computation of Scattering
|
Quantum Computation of Scattering
in Scalar Quantum Field Theories, S. P. Jordan, K. S. M. Lee, and J. Preskill, arXiv:1112.4833
|
Andrew M. Lopez
|
Elko Fields
|
Dark matter: A spin one half fermion field with mass dimension one? D. V. Ahluwalia-Khalilova and D. Grumiller, arXiv:hep-th/0410192v2
On a local mass dimension one Fermi field of spin one-half and the theoretical crevice that allows it, D.V. Ahluwalia, arXiv:1305.7509v1
Searching for Elko dark matter spinors at the CERN LHC, A. Alves, et al., arXiv:1401.1127
|
Daniel M. Odell
|
Decays of the Higgs Boson
|
An Introduction to Quantum Field Theory, M. E. Peskin and D. V. Schroeder, Addison Wesley, pp. 775 -777.
|
Niravkumar D. Patel
|
Density Matrix Renormalization Group
|
arXiv:cond-mat/0409292
|
Krishna Thapa
|
Hard-scattering Processes in Hadron Collisions
|
An Introduction to Quantum Field Theory, M. E. Peskin and D. V. Schroeder, Addison Wesley.
|
Tono Coello Perez
|
Chiral symmetry breaking
|
An Introduction to Quantum Field Theory, Michael E. Peskin and Daniel V. Schroeder, Addison Wesley.
The Quantum Theory of Fields, Steven Weinberg, Vol. I, Cambridge University Press.
|
Suman Ganguli
|
CFT multipoint correlators and quantum critical transport
|
Multipoint correlators of conformal field theories: implications for quantum critical transport, D. Chowdhury, et al.,
arXiv:1210.5247.
|
Chris Hayes
|
Path integrals
|
References
|
Mostafa Hussein
|
Single and double parton scattering: theoretical analysis and Pythia simulation
|
Calculation of W b bbar Production via Double Parton Scattering at the LHC, E. L. Berger, et al.,
arXiv:1107.3150v2.
|
Eleftherios Moschandreou
|
Young tableaux in quantum field theory
|
Lie Algebras In Particle Physics: from Isospin To Unified Theories, H. Georgi, Frontiers in Physics.
Fields, W. Siegel.
|
Nick Sirica
|
Photoemission process within the Keldysh formalism
|
Inelastic Effects in Photoemission: Microscopic Formulation and Qualitative Discussion, C. Caroli, et al.,
Phys. Rev. B 8, 4552 (1973).
Quantum field-theoretical methods in transport theory of metals, J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).
|
Weisong Tu
|
Quantum Hall Effect and Topological Insulators
|
M. Konig, et al., Science 318, 766 (2007).
S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301, 1348 (2003).
Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
|
Robert Van Wesep
|
Linear response theory
|
Condensed Matter Field Theory, Alexander Altland and Ben Simons, Cambridge.
|
Kubra Yeter
|
Optical conductivity with holographic lattices
|
arXiv:1204.0519
,
arXiv:1209.1098
|
Hua Chen
|
Topological Insulators
|
arXiv:0802.3537
|
Jordan McDonnell
|
Bound state production (mesons and baryons)
|
An Introduction to Quantum Field Theory, by Michael E. Peskin and Daniel V. Schroeder, Addison Wesley - Chapter 5.
|
Matthew Musgrave
|
Deep Inelastic Scattering I
|
An Introduction to Quantum Field Theory, by Michael E. Peskin and Daniel V. Schroeder, Addison Wesley - Chapter 17.
|
Giordano Cerizza
|
Deep Inelastic Scattering II
|
An Introduction to Quantum Field Theory, by Michael E. Peskin and Daniel V. Schroeder, Addison Wesley - Chapter 17.
|
|