Home
Syllabus
Homework
Projects
Timetable
Textbooks
Notes (pdf format)
The QT Group

PROJECTS
You need to do a project
on a topic of your choice selected after consultation with the
Instructor, write a paper on it and present it in class at the
end of the semester. This is not meant to be original work. You just
need to understand a certain subject described in one of the recommended
textbooks
and not covered in class, or in a research paper you happen to be interested in.
DEADLINES
 Consult with Instructor and agree on scope of project by Fri., Feb. 1
 First draft due by Fri., Mar. 29
 Paper due by Fri., Apr. 26
 Presentations Fri., May 3 (10:15 a.m.  12:15 p.m.)
LIST OF PROJECTS
Name

Title

References

Presentation

Trevor Keen

Exact Diagonalization and Dynamical Mean Field Theory

G. Kotliar and D. Vollhardt, Strongly Correlated Materials: Insights From Dynamical MeanField Theory,
Physics Today 57, 53 (2004).
A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Dynamical meanfield theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys. 68, 13 (1996).
A. Liebsch and H. Ishida, Temperature and bath size in exact diagonalization dynamical mean field theory, J. Phys.: Condens. Matter, 24, 053201 (2012).

10:15 am 
Chinmay Mishra
&
Shane Thompson

AdS/CFT Correspondence and an Application

M. Natsuume, AdS/CFT Duality User Guide, arXiv:1409.3575 [hepth].
D. T. Son and A. O. Starinets, Viscosity, Black Holes, and Quantum Field Theory, arXiv:0704.0240 [hepth].

10:35 am 
Austin Schmier

Parton energy loss in the quarkgluon plasma

The JET Collaboration, Extracting jet transport coefficient from jet quenching at RHIC and LHC, arXiv:1312.5003 [nuclth].
A. Majumder, A comparative study of Jetquenching Schemes, arXiv:nuclth/0702066.

11:15 am 
Zichao Yang

Fewbody applications of effective field theories

H.W. Hammer and S. König, General aspects of effective field theories and fewbody applications, arXiv:1610.02961 [nuclth].

11:35 am 
PAST PROJECTS
Name

Title

References

Himal Acharya

Double vector quarkonia production in exclusive Higgs boson decays

V. Kartvelishvili, A. V. Luchinsky, and A. A. Novoselov, Double vector quarkonia production in exclusive Higgs boson decays, arXiv:0810.0953 [hepph].
G. T. Bodwin, F. Petriello, S. Stoynev, and M. Velasco, Higgs boson decays to quarkonia and the Hccbar coupling, arXiv:1306.5770 [hepph].

Mohammad AlMamun

Neutrino Interactions in Hot and Dense Matter

S. Reddy, M. Prakash, and J. M. Lattimer, Neutrino Interactions in Hot and Dense Matter, arXiv:astroph/9710115.

Jonathan M. Clark

Spacetime, entanglement, and the ER = EPR conjecture

M. Van Raamsdonk, Building up spacetime with quantum entanglement, arXiv:1005.3035 [hepth].
J. Maldacena and L. Susskind, Cool horizons for entangled black holes, arXiv:1306.0533 [hepth].
L. Susskind, Copenhagen vs Everett, Teleportation, and ER=EPR, arXiv:1604.02589 [hepth].

Charles P. Hughes

HawkingUnruh Tenperature

P. M. Alsing and P. W. Milonni, Simplified derivation of the Hawking–Unruh temperature for an accelerated observer in
vacuum, American Journal of Physics 72, 1524 (2004).
K. T. McDonald, HawkingUnruh Radiation
and Radiation of a Uniformly Accelerated Charge (1998).
P. Castorina, A. Iorioc, and H. Satz, Hadron FreezeOut and Unruh Radiation, arXiv:1409.3104 [hepph].

Ilias Kokkas

The infrared triangle

A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [hepth].
D. Kapec, M. Pate, and A. Strominger, New Symmetries of QED, arXiv:1506.02906 [hepth].
D. Kapec, M. Perry, A.M. Raclariu, and A. Strominger, Infrared Divergences in QED, Revisited, arXiv:1705.04311 [hepth].

Aaron M. LackeyStewart

Semiclassical approaches are inconsistent

A. Luis and G. Garcia, Semiclassical approaches are inconsistent, arXiv:1801.03642 [quantph].

Chinmay Mishra

Extracting Entanglement from a Quantum Field Vacuum

A. Valentini, Nonlocal correlations in quantum electrodynamics, Phys. Lett. A 153, 321 (1991).
B. Reznik, Entanglement from the Vacuum, Foundations of Physics, 33, 167 (2003).
A. PozasKerstjens and E. MartínMartínez, Harvesting correlations from the quantum vacuum, Phys. Rev. D 92, 064042 (2015).
K. Bradler, G. Siopsis, and A. Wozniakowski, Covert Quantum Internet, arXiv:1704.07281 [quantph].

Hao Zhang

Spin wave interactions on triangular lattice

M. E. Zhitomirsky and A. L. Chernyshev, Colloquium: Spontaneous magnon decays Rev. Mod. Phys. 85, 219 (2013).

Joshua L. Barrow

NeutronAntineutron Oscillation Time Predictions at Tree Level

 Postsphaleron baryogenesis and an upper limit on the neutronantineutron oscillation time, K. S. Babu, et al., Phys. Rev. D 87, 115019 (2013).
 Postsphaleron Baryogenesis, K. S. Babu, R. N. Mohapatra, and S. Nasri, Phys. Rev. Lett. 97, 131301 (2006).
 NeutronAntineutron Operator Renormalization, M. I. Buchoff and M. Wagman, Proc. Of Sci, The 32nd Int. Symp. On Lattice Field Theory, June 2014.
 Perturbative renormalization of neutronantineutron operators, M. I. Buchoff and M. Wagman, Phys. Rev. D 93, 016005 (2016).

Daniel E. Castillo

Faulttolerant quantum computation by anyons

Faulttolerant quantum computation by anyons, A. Yu. Kitaev, Annals Phys. 303 (2003) 230; arXiv:quantph/9707021.

Jimmy P. Caylor

Electric dipole moment of the neutron

The neutron and its role in cosmology and particle physics, D. Dubbers and M. G. Schmidt,
Rev. Mod. Phys. 83, 1111 (2011).

Casey J. Eichstaedt

Renormalization in constructing lowenergy effective model Hamiltonian for real materials from first principles electronic structure calculations

Frequencydependent local interactions and lowenergy effective models from electronic
structure calculations, F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, and A. I. Lichtenstein, Phys. Rev. B 70, 195104 (2004).
Inhomogenous electron gas, P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

Joseph N. Heideman

Higgs Boson Decay with Quarkonia Production

Double vector quarkonia production in exclusive Higgs boson decays, V. Kartvelishvili, A. V. Luchinsky, and A. A. Novoselov, Phys. Rev. D 79, 114015 (2009);
arXiv:0810.0953 [hepph].

William E. Witt

Deep Inelastic Scattering

An Introduction to Quantum Field Theory, by Michael E. Peskin and Daniel V. Schroeder, Addison Wesley  Chapter 17.

Brandon L. Cathey

Hawking Radiation

Modeling Black Hole Evaporation, A. Fabbri and J. NavarroSalas, Imperial College Press.

Samuel B. Emmons

Deep Inelastic scattering

Renormalization: An Introduction to Renormalization, the Renormalization Group and the OperatorProduct Expansion, J. C. Collins, Cambridge Monographs on Mathematical Physics.

Blaine A. Heffron

Quantum Computation of Scattering

Quantum Computation of Scattering
in Scalar Quantum Field Theories, S. P. Jordan, K. S. M. Lee, and J. Preskill, arXiv:1112.4833

Andrew M. Lopez

Elko Fields

Dark matter: A spin one half fermion field with mass dimension one? D. V. AhluwaliaKhalilova and D. Grumiller, arXiv:hepth/0410192v2
On a local mass dimension one Fermi field of spin onehalf and the theoretical crevice that allows it, D.V. Ahluwalia, arXiv:1305.7509v1
Searching for Elko dark matter spinors at the CERN LHC, A. Alves, et al., arXiv:1401.1127

Daniel M. Odell

Decays of the Higgs Boson

An Introduction to Quantum Field Theory, M. E. Peskin and D. V. Schroeder, Addison Wesley, pp. 775 777.

Niravkumar D. Patel

Density Matrix Renormalization Group

arXiv:condmat/0409292

Krishna Thapa

Hardscattering Processes in Hadron Collisions

An Introduction to Quantum Field Theory, M. E. Peskin and D. V. Schroeder, Addison Wesley.

Tono Coello Perez

Chiral symmetry breaking

An Introduction to Quantum Field Theory, Michael E. Peskin and Daniel V. Schroeder, Addison Wesley.
The Quantum Theory of Fields, Steven Weinberg, Vol. I, Cambridge University Press.

Suman Ganguli

CFT multipoint correlators and quantum critical transport

Multipoint correlators of conformal field theories: implications for quantum critical transport, D. Chowdhury, et al.,
arXiv:1210.5247.

Chris Hayes

Path integrals

References

Mostafa Hussein

Single and double parton scattering: theoretical analysis and Pythia simulation

Calculation of W b bbar Production via Double Parton Scattering at the LHC, E. L. Berger, et al.,
arXiv:1107.3150v2.

Eleftherios Moschandreou

Young tableaux in quantum field theory

Lie Algebras In Particle Physics: from Isospin To Unified Theories, H. Georgi, Frontiers in Physics.
Fields, W. Siegel.

Nick Sirica

Photoemission process within the Keldysh formalism

Inelastic Effects in Photoemission: Microscopic Formulation and Qualitative Discussion, C. Caroli, et al.,
Phys. Rev. B 8, 4552 (1973).
Quantum fieldtheoretical methods in transport theory of metals, J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).

Weisong Tu

Quantum Hall Effect and Topological Insulators

M. Konig, et al., Science 318, 766 (2007).
S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301, 1348 (2003).
Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).

Robert Van Wesep

Linear response theory

Condensed Matter Field Theory, Alexander Altland and Ben Simons, Cambridge.

Kubra Yeter

Optical conductivity with holographic lattices

arXiv:1204.0519
,
arXiv:1209.1098

Hua Chen

Topological Insulators

arXiv:0802.3537

Jordan McDonnell

Bound state production (mesons and baryons)

An Introduction to Quantum Field Theory, by Michael E. Peskin and Daniel V. Schroeder, Addison Wesley  Chapter 5.

Matthew Musgrave

Deep Inelastic Scattering I

An Introduction to Quantum Field Theory, by Michael E. Peskin and Daniel V. Schroeder, Addison Wesley  Chapter 17.

Giordano Cerizza

Deep Inelastic Scattering II

An Introduction to Quantum Field Theory, by Michael E. Peskin and Daniel V. Schroeder, Addison Wesley  Chapter 17.

