Home
Syllabus
Homework
Projects
Timetable
The QT Group
|
PROJECTS
You need to do a project
on a topic of your choice selected after consultation with the
Instructor, write a paper on it, and present it in class at the
end of the semester. This is not meant to be original work. You just
need to understand a certain subject described in an appropriate textbook
and not covered in class, or in a research paper you happen to be interested in.
DEADLINES
- Consult with Instructor and agree on scope of project by Fri., Sep. 13
- First draft due by Wed., Oct. 23
- Paper due by Wed., Dec. 4
- Presentations Mon., Dec. 9 (10:00 a.m. - 12:30 p.m.)
LIST OF PROJECTS
Name
|
Title
|
References
|
Presentation
|
Rizwanul Alam
|
The Quantum Lanczos Method
|
M. Motta, et al., Quantum Imaginary Time Evolution, Quantum Lanczos, and Quantum Thermal Averaging,
arXiv:1901.07653 [quant-ph].
|
Mon., Dec. 9, 10:00 a.m. |
Shikha Bangar
|
Cosmic Inflation and Quantum Information
|
J. Martin, Cosmic Inflation, Quantum Information and the
Pioneering Role of John S Bell in Cosmology, arXiv:1904.00083 [quant-ph].
|
Mon., Dec. 9, 10:10 a.m. |
Mu-Hung Chang
|
Operational approach to quantum stochastic thermodynamics
|
P. Strasberg, Operational approach to quantum stochastic thermodynamics, Physical Review E 100, 022127 (2019).
J. Gemmer, M. Michel, and G. Mahler, Quantum thermodynamics: Emergence of thermodynamic behavior within composite quantum systems, Lectures Notes in Physics 784, Springer (2009).
|
Mon., Dec. 9, 10:20 a.m. |
Jifeng Fan
|
A geometric approach to quantum circuit lower bounds
|
M. A. Nielsen, A geometric approach to quantum circuit lower bounds, arXiv:quant-ph/0502070.
|
Mon., Dec. 9, 10:30 a.m. |
Adrien Green
|
The Photon Splitting Number Attack and Decoy States for BB84
|
Hoi-Kwong Lo, Xiongfeng Ma, and Kai Chen, Decoy State Quantum Key Distribution, Physical Review Letters 94 (2005) 230504.
Norbert Lütkenhaus and Mika Jahma, Quantum key distribution with realistic states: photon-number statistics in the
photon-number splitting attack,
New J. Phys. 4 (2002) 44.
|
Mon., Dec. 9, 10:40 a.m. |
Chenyi Gu
|
Simulating Hamiltonian dynamics with a truncated Taylor series
|
D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Simulating Hamiltonian dynamics with a truncated Taylor series, Phys. Rev. Lett. 114, 090502 (2015).
A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su, Toward the first quantum simulation with quantum speedup, Proceedings of the National Academy of Sciences 115, 9456 (2018).
|
Mon., Dec. 9, 10:50 a.m. |
Paul Kairys
|
Tensor Networks and Graphical Calculus for Open Quantum Systems
|
C. J. Wood, J. D. Biamonte, and D. G. Cory, Tensor networks and graphical calculus for open quantum systems, Quant. Inf. Comp. 15, 0579 (2015).
H. Weimer, A. Kshetrimayum, and R. Orús, Simulation methods for open quantum many-body systems, arXiv:1907.07079 [quant-ph].
|
Mon., Dec. 9, 11:00 a.m. |
Chinmay Mishra
|
Spacetime from Entanglement
|
B. Swingle, Spacetime from Entanglement, Annu. Rev. Condens. Matter Phys. 9, 345 (2017).
X.-L. Qi, Does gravity come from quantum information?, Nat. Phys. 14, 984 (2018).
M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Relativ. Gravit. 42, 2323 (2010).
|
Mon., Dec. 9, 11:10 a.m. |
Wileam Phan
|
Experimental Microwave Quantum Illumination
|
S. Barzanjeh, S. Pirandola, D. Vitali, and J. M. Fink, Experimental Microwave Quantum Illumination, arXiv:1908.03058 [quant-ph].
|
Mon., Dec. 9, 11:20 a.m. |
Kazi Reaz
|
Loss-tolerant quantum secure positioning with weak laser sources
|
C. W. Lim, F. Xu, G. Siopsis, E. Chitambar, P. Evans, and B. Qi, Loss-tolerant quantum secure positioning with weak laser sources, Phys. Rev. A 94, 032315 (2016).
|
Mon., Dec. 9, 11:30 a.m. |
Brian Rollick
|
Finding the Best Quantum Memory for Free Space Photon Qubits
|
Wang, Y., Li, J., Zhang, S., Su, K., Zhou, Y., Liao, K., Du, S., Yan, H., and Zhu, S.-L., Efficient quantum memory for single-photon polarization qubits.
Nature Photonics 13, 346 (2019).
Ding, D.-S., Zhou, Z.-Y., Shi, B.-S., and Guo, G.-C.,
Single-Photon-Level Quantum Image Memory Based on Cold Atomic Ensembles, Nat. Commun. 4, 2527 (2013).
|
Mon., Dec. 9, 11:40 a.m. |
Leanto Sunny
|
Power of one non-clean qubit
|
T. Morimae, K. Fujii, and H. Nishimura, Power of one non-clean qubit, Phys. Rev. A 95, 042336 (2017).
|
Mon., Dec. 9, 11:50 p.m. |
Andrew Tarrence
|
A quantum approximate optimization algorithm
|
E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv preprint arXiv:1411.4028.
|
Mon., Dec. 9, 12:00 a.m. |
Shane Thompson
|
Topological Quantum Computing
|
C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-Abelian Anyons and Topological Quantum Computation. ArXiv.org, 28 Mar. 2008.
V. Lahtinen and J. K. Pachos, A Short Introduction to Topological Quantum Computation. ArXiv.org, 12 Sept. 2017.
A. Kitaev, Anyons in an Exactly Solved Model and Beyond. ArXiv.org, 1 Jan. 2008.
J. Preskill, Lecture Notes for Physics 219: Quantum Computation.
|
Mon., Dec. 9, 12:10 p.m. |
Chengkun Xing
|
Entanglement in one-dimentsional spin chain systems
|
G. Vidal, G. Vidal, J. I.Latorre, E. Rico, and A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett. 90, 227902 (2003).
H. Fan, V. Korepin, V.Roychowdhury, Entanglement in a valence-bond-solid state, Phys. Rev. Lett. 93, 227203 (2004).
|
Mon., Dec. 9, 12:20 p.m. |
LIST OF PAST PROJECTS
Name
|
Title
|
References
|
Joshua L. Barrow
Andrew J. Morgan
|
Measurement of Orbital Angular Momentum
|
M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, Efficient separation of the orbital angular momentum eigenstates of light, Nature Communications 4, 2781 (2013).
G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, Efficient Sorting of Orbital Angular Momentum States of Light, Phys. Rev. Lett. 105, 153601 (2010).
M. Malik, M. Mirhosseini, M. P. J. Lavery, J. Leach, M. J. Padgett, and R. W. Boyd, Direct measurement of a 27-dimensional orbital-angular-momentum state vector Nature Communications 5, 3115 (2014).
|
Daniel E. Castillo
|
Quantum Information and Black Holes
|
P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems,
JHEP 0709, 120 (2007) [arXiv:0708.4025].
S. L. Braunstein, S. Pirandola, and K. Zyczkowski, Better Late than Never: Information Retrieval from Black Holes, Phys. Rev. Lett. 110, 101301 (2013) [arXiv:0907.1190].
S. G. Avery, Qubit Models of Black Hole Evaporation, arXiv:1109.2911.
|
Philip M. Dee
|
Quantum secret sharing
|
M. Hillery, V. Buzek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59, 1829 (1999).
|
Blaine A. Heffron
|
Quantum Information with Continuous Variables
|
S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).
S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).
C. Weedbrook, et al.,
Rev. Mod. Phys. 84, 621 (2012).
N. C. Menicucci, Phys. Rev. Lett. 112, 120504 (2014).
|
Ryan P. Sinclair
|
Majorana fermions
|
C. W. J. Beenakker, "Search for Majorana Fermions in Superconductors" Annu. Rev. Con. Mat. Phys. 4, 113 (2013) [arXiv:1112.1950].
M. Sato and S. Fujimoto, Majorana Fermions and Topology in Superconductors arXiv:1601.02726.
G. L. Fatin, A. Matos-Abiague, B. Scharf, and I. Žutić, Wireless Majorana Fermions: From Magnetic Tunability to Braiding, arXiv:1510.08182.
Y. Li, Noise threshold and resource cost of fault-tolerant quantum computing with Majorana fermions in hybrid systems, arXiv:1512.05089.
L.S. Ricco, Y. Marques, F.A.Dessotti, R.S. Machado, M. de Souza, and A.C. Seridonio, Decay of bound states in the continuum of Majorana fermions induced by vacuum fluctuations: a novel proposal of qubit technology, arXiv:1512.02725.
S. Vijay, T. H. Hsieh, and L. Fu, Majorana Fermion Surface Code for Universal Quantum Computation, Phys. Rev. X 5, 041038 (2015) [arXiv:1504.01724].
S. Vijay and L. Fu, Physical Implementation of a Majorana Fermion Surface Code for Fault-Tolerant Quantum Computation, arXiv:1509.08134.
|
Mark M. Foerster
|
Computer simulation of Shor's prime number factoring
|
Quantum Computation and Quantum Information, by Michael A. Nielsen and
Isaac L. Chuang,
Cambridge University Press.
|
Mostafa Sherif Derbala Hussein
|
Acceleration as a Controlling Parameter for a Qubit in a Multi-mode Field Cavity to Build Quantum Gates
|
E. Martin-Martinez, et al., Processing Quantum Information with Relativistic Motion of Atoms, arXiv:1209.4948 [quant-ph].
|
Eleftherios Moschandreou
|
The Hidden Subgroup Problem
|
C. Lomont, The Hidden Subgroup Problem - Review and Open Problems,
arXiv:quant-ph/0411037.
F. Wang, The Hidden Subgroup Problem,
arXiv:1008.0010 [quant-ph].
|
Byron H. Smith
|
Bayesian Quantum Tomography
|
J. B. Altepeter, D. F. V. James, and P. G. Kwiat,
Qubit Quantum State Tomography, in
Quantum State Estimation (Lecture Notes in Physics), M. Paris and J. Rehacek (editors), Springer (2004).
|
Joseph L. Tubergen
|
P vs NP and the Future of Quantum Computation
|
Quantum Computation and Quantum Information, by Michael A. Nielsen and
Isaac L. Chuang,
Cambridge University Press.
P versus NP problem
P versus NP
|
Kubra Yeter-Aydeniz
|
Black Hole Complementarity and Firewalls
|
A. Almheiri, et al., Black Holes: Complementarity or Firewalls? arXiv:1207.3123 [hep-th].
|
Mostafa Sherif Derbala Hussein
|
Quantum Discord between relatively accelerated observers
|
H. Ollivier and W. H. Zurek, Quantum Discord: A Measure of the Quantumness of Correlations, Phys. Rev. Lett. 88, 017901 (2001) .
|
Andrew M. Lopez
|
One-way Quantum Computation
|
P. Walther, et al., Experimental one-way quantum computing,
Nature 434, 169-176 (2005).
H. Briegel and D. Brown, One-way Quantum Computation - a tutorial introduction,
arXiv:quant-ph/0603226.
|
Eleftherios Moschandreou
|
Photonic quantum technologies
|
J. L. O'Brien, et al., Photonic quantum technologies,
Nature Photonics 3, 687 (2009).
|
Grant V. Riley
|
Quantum Computer in a Diamond
|
Petta Group
L. Robledo, et al., High-fidelity projective readout of a solid-state spin quantum register, arXiv:1301.0392 [quant-ph].
Y. Dovzhenko, et al., Nonadiabatic quantum control of a semiconductor charge qubit, Phys. Rev. B 84, 161302(R) (2011).
D. D. Awschalom, et al., Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors, Science 339, 1174 (2013).
|
Steven Z. Taylor
|
Ground-satellite QKD through free space
|
J.Y Wang, et al., Direct and Full-Scale Experimental Verifications Towards Ground-Satellite Quantum Key Distribution,
Nature Photonics 7, 387-393 (2013)
Z. Yan, et al., Novell High-Speed Polarization Source for Decoy-State BB84 Quantum Key Distribution Over Free Space and Satellite Links,
Journal of Lightwave Technology, Vol. 31, Issue 9, pp. 1399-1408 (2013)
|
Joseph L. Tubergen
|
Quantum process tomography of a CNOT gate
|
J. L. O'Brien, et al., Quantum Process Tomography of a Controlled-NOT Gate, Phys. Rev. Lett. 93, 080502 (2004).
|
Kubra Yeter-Aydeniz
|
Quantum Field Theory and Quantum Computing
|
S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum Computation of Scattering in Scalar Quantum Field Theories, arXiv:1112.4833 [hep-th].
|
Allison Sachs
Ran Chu
|
Qubit Recycling
|
E. Martin-Lopez, et al., Experimental realisation of Shor's quantum factoring algorithm using qubit recycling, arXiv:1111.4147 [quant-ph].
|
|