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UNIT 10

D-Branes

10.1 T-duality (again)

Consider type-II theories. We have

IIA : (NS+, NS+) (R+, NS+) (NS+, R−) (R+, R−)
IIB : (NS+, NS+) (R+, NS+) (NS+, R+) (R+, R+)

Compactify the 10th dimension on a circle of radius R in IIA, say. As we
showed in the bosonic theory (argument is the same) the theory atR is iden-

tical to the theory at R′ = α′

R (T-duality).

To show this, we started with the coordinate X9 = U = UL(z) + UR(z̄) and
introduced the coordinate z = UL(z) − UR(z̄). The resulting theory is at R′ =
α′

R . In other words, the parity transformation on the right-moving part (only!).

X9
R(z̄) → −X9

R(z̄)

relates the theory atRwith the theory atR′ = α′

R . Because of the superconfor-
mal invariance, this parity transformation is also applied tp the superpartner,
ψ̃9(z̄)

ψ̃9(z̄) → −ψ̃9(z̄).

This, in particular, reverses the chirality of the states in the antiholomorphic
part, so R- ↔ R+. Therefore IIA ↔ IIB, because that is the only difference

between the two theories. Therefore IIA at R is equivalent to IIV at R′ = α′

R .

In particular, the IIA R-R fields, Cµ, Cµνλ are mapped onto the IIB R-R fields,
C, Cµν , Cµνρσ as follows:

C9 → C, Cµ → Cµ9, Cµν9 → Cµν , Cµνλ → Cµνλ9.

Of course, e.g., Cµνρσ is obtained from Cµνρσ9 in IIA, but Cµνρσ9 is not an in-
dependent field (can be expressed in terms of Cµ, Cµνλ) 8 + 56 = 64.
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Type-I Strings If we compactify the 10th dimension, X9(z, z̄), then the theory

in the R → 0 limit is mapped onto a T-dual theory at R = α′

R → ∞ which
contains a D-brane.
Recall the argument, in theR′ theory, the 10th dimension is

Z(z, z̄) = X9
L(z) −X9

R(z̄), ∂σZ = ∂τX
9

so

Z(σ = π) − Z(σ = 0) =

∫ π

0

dσ∂σZ =

∫ π

0

dσ∂τX
9 =

∫ π

0

∂τ (2α
′pτ)

= 2α′pπ = 2α′ n

R
π = 2πnR′ = 0.

Translation invariance is broken in the T-dual theory. Massless modes (same
as in uncompactified theory)

NS : Aµψ
µ
−1/2|k〉, Aψ

9
−1/2|k〉, R : |~s; k〉

where Aµ represents a photon tangent to the brane. The second state shifts
the position of the brane making it a dynamical object. (A is a function of k
→ its F.T. is a function of Xµ, µ = 0, 1, ..., 8).
Even though the translation invariance is broken, the original theory has 32
supersymmetries! Of these, only half are broken. Thus the brane is a super-
symmetric object with 16 supersymmetries! This large amount of symmetry
implies the existence of conserved charges. What are they?
Our brane has 8+1 dimensions, so its volume element couples to the R-R po-
tential, Cµ1µ2,...,µ9

(dV ∼ εµ1µ2...µ9
dxµ1 ...dxµ9 ).

Recall familiar examples:

• A point charge qmoving along a trajectory xµ(τ) has the action q
∫

dτvµAµ =
∫

dτjµAµ = q
∫

dxµAµ. The charge q is conserved.

• The magnetic flux: Φ =
∫

~B · d~s , ~B = ∇ × ~A Define a field strength:
Fij = ∂iAj − ∂jAi. Then Bi = 1

2εijkF
jk , so Φ =

∫

FjkdS
jk where

dSjk = 1
2ε
ijkdSi is the surface element. This is the magnetic charge,

i.e., 0. Similarly, for the electric charge field, ΦE =
∫

F0idΣ
0i ∝ q.

For the R-R charge on the D8 brane, we have

Q ∝
∫

dxµ1 ...dxµ9Cµ1...µ9

If we dualize two more dimension, the brane becomes a 6+1 dimensional ob-
ject, (D6-brane). Two more gives D4, two more gives D2 and two more gives a
D0 brane which represents a point particle. The charges are

∫

dxµCµ,
∫

dxµ1dxµ2 ...Cµ1µ2...

which are the R-R fields in type IIA theory! On the other hand, the D(2p+1)-
branes couple to Cµ1µ2

, Cµ1µ2µ3µ4
, etc., which are the potentials in the type-

IIB theory!
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Not all these potentials are independent. Consider, e.g., D0-brane coupled
to Cµ. The D0-brane is a point particle (with strings attached- hairy) with
charge q which is the source of Cµ and field strength Fµν = ∂µCν − ∂νCµ. q is
an electric charge. The flux

∫

FµνdΣ
µν ∝ q (Gauss’ Law).

In four dimensional electromagnetism we may define the dual of Fµν as F̃µ =
1
2εµνρσF

ρσ which interchanges ~E ↔ ~B. Then the electric charges become

magnetic charges. One may define a vector potential Ãµ corresponding to

F̃µν and describe electromagnetics in terms of Ãµ instead of Aµ. Ãµ can not
be defined globally, since the magnetic flux around a charge is no longer zero,
but it can be defined in patches, or almost everywhere apart from the string
(Dirac string). If we include both electric and magnetic charges, then no
action can be defined, yet the theory still makes sense. The existence of a
monopole leads to quantization of the electric charge (Dirac).
Proof: Consider a point particle moving from ~x1 → ~x2. Its wavefunction
changes ψ(~x1) → ψ(~x2). If I want to compare ψ(~x1) and ψ(~x2), then I will
define the quantity ψ(~x2) ∗ ψ(~x1). In the limit ~x2 → ~x1 (closed path) we
obtain |ψ(~x1)|2. Gauge invariance: ψ(~x) → eiqλ(x)ψ(~x), so ψ∗(~x2)ψ(~x1) →
eiq(λ(x2)−λ(x1))ψ∗(~x2)ψ(~x1) This is not a gauge-invariant oblect. To make it

gauge-invariant, multiply by eiq
�
~A·d~̀, ~A→ ~A−∇λ, so δeiq

�
~A·d~̀ = e−iq(λ(~x1)−λ(~x2)),

so ψ∗(~x2)e
iq

�
~A·d~̀ψ(~x1) is gauge-invariant (physical)!

Go around a loop: we have eiq � ~A·d~̀|ψ(~x1)|2. By Stoke’s theorem,
∮

C
~A · d~̀ =

∫

S
~B · d~s (flux through S).

If the path shrinks to zero, then
∮

C
~A · d~̀=

∫

S
~B · d~s = 0.

In the presence of a magnetic monopole,
∫

S
~B · d~s = m, the magnetic charge,

so eiq
�
S
~B·d~s = eiqm. We must have eiqm = 1, therefore qm = 2πn, i.e., q is

quantized even if only one magnetic monopole exists in the entire Universe.
Returning to D-branes, the Cµ potential on the D0-brane has field strength
Fµν whose dual is εµ1µ2...µ10Fµ9µ10

(8 indices). It corresponds tp a potential
with seven indices, Cµ1µ2...µ7

which resides on a D6-brane.
Thus the D0 electric charge is a source for the same field for which the D6-
branes magnetic charge is a source. More generally, the electric Dp-brane
charge and the magnetic D(6-p)-brane charge are sources for the same field.
Action for D0-branes electromagnetism:

S = −1

2

∫

d10x
√−gFµνF µν + q

∫

dxµAµ

The potential between two points (D0-branes) is a Coulomb potential (in
10D)

V (y) ∝ q2

y7

In momentum space, this is obtained from the propagator − i
k2 where kµ is

the momentum of the exchanged boson (photon). Then

V (y) = −i
∫

d10kei
~k·~y q

2

k2
= −i 15V

32π4

q2

y7
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where V =
∫

dω.
With D-branes, the potential comes from the exchange of closed strings. This
may also be viewed as an open string with ends at y = 0 and y = y moving
around a loop. We already know how to calculate it.
The answer is

Z =

∫ ∞

0

dt

2t
Z(t), Z(t) = Tr e−2πtL0 .

Recall our result earlier

ZNS = i
V

8π(8π2α′)5

∫ ∞

0

ds(16 + o(e−2s)), s =
π

t
.

Now we have 9 dimensions (16 compactified), so s = 9
2 . Also there is no

integral over spatial momenta, only the energy D0-branes have world-lines,

so the contribution from 0-modes
(

8π2α′t
)−D/2 →

(

8π2α′t
)−1/2

, therefore,

there is an additional factor
(

8π2α′t
)−(1−D)/2 →

(

8π2α′t
)9/2

.
An extra factor of 4 = 2 × 2 ( 2 from XXXXX and no need to average over
orientations). Finally, since Z(σ = π)−Z(σ = 0) = y, the expansion contains

an extra termZ = y σπ + ...which gives an extra contribution toL0 = y2

4π2α′ + ....

Therefore the extra factor is given by e−2πt y2

4π2α′ = e−ty
2/2πα′

. The partition
function becomes

Z → iV (4 × 16)

8π(8π2α′)5

∫ ∞

0

πdt

t2
(8π2α′t)9/2e−ty

2/2πα′

= iV (2π)(4π2α′)3
15

32π4

1

y7

This is compared to the potential V (y) = −i 15V
32π4

q2

y7 . In fact it is the R-sector

ZR = V (y), but ZR = −ZNS, so q2 = 2π(4π2α′)3.
This generalizes to Dp-branes: (8π2α′t)9/2 → (8π2α′t)(9−p)/2. The potential
generalizes to Vp(y) ∼ 1

y7−p and the charges become q2p = 2π(4π2α′)3−p.

For the D6-brane, q26 = 2π
(4π2α′)3 , so q6q0 = 2π, the Dirac quantization condi-

tion with n = 1! In general, qpq6−p = 2π, confirming that the Dp-brane and
D(6-p)-brane act as electric and magnetic sources for the same field.

10.2 D-branes at angles

So far we have considered similar D-branes separated by a distance y. These
are parallel D-branes. More generally, we can have a Dp-brane and a Dp’-
brane along different subspaces and they may even intersect e.g., a D8-brane
obtained by dualizing X9 and a D8-brane from X8 dualization. These two
branes have the space (X1, X2, ..., X7) common. One may be obtained by ro-
tating the other by 90◦ in the (X8, X9) plane. An open string may stretch be-
tween these two branes. Then itsX9 coordinate will obey Dirichlet boundary
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conditions at one end and Neumann boundary conditions at the other. The
X8 coordinate is reversed: Neumann boundary conditions at one end and
Dirichlet at the other. Thus the modes expansions will be different. Recall for
Neumann boundary conditions on both ends (set τ = 0 for simplicity)

Xµ
NN(σ) = xµ + i

√
2α′

∑ 1

n
αµn cos(nσ).

Check ∂σXNN6µ = 0 at σ = 0, π.
For Dirichlet boundary conditions on both ends,

Xµ
DD(σ) =

yσ

π
− i

√
2α′

∑ 1

n
αµn sin(nσ)

where y is the separation of the two (parallel in the µ-direction) branes. Check
Xµ
DD(0) = 0, Xµ

DD(π) = y. Xµ
NN is split into holomorphic and antiholomor-

phic pieces as such

Xµ
L =

1

2
xµ + i

√

α′

2

∑ 1

n
αµne

inσ

Xµ
R =

1

2
xµ + i

√

α′

2

∑ 1

n
αµne

−inσ

XDD is split as Xµ
DD = Xµ

L − Xµ
R (dual!) For DN-b.c., i.e., Xµ

DN (σ = 0) =
0 , ∂σX

µ
DN (σ = π) = 0, we obtain

Xµ
DN (σ) = −

√
2α′

∑

r∈Z+1/2

αµr
r

sin(rσ).

For ND-boundary conditions, we haveXµ
ND(σ) = i

√
2α′ ∑

r
�

Z+1/2
αµ

r

r cos(rσ).

The superpartners ψµ and ψ̃µ are similar.
Generalize to general angles. Suppose that there is an angle φ between the
branes and consider strings stretched between the two. DefineZ = X8 + iX9

(the brane at X9 = 0 is not rotated-no loss of generality). At σ = 0, X9 = 0
and ∂σX

8 = 0, so Im(Z) = 0, Re(Z) = 0. At σ = π, the brane is rotated by φ,
so Z → eiφZ, so Im(Ze−iφ = ∂σ Re(Ze−iφ) = 0.
We may expand in terms of the modes

Z =

√

2

α′

∑

r∈Z+ φ
π

αr
r
eirσ +

√

2

α′

∑

r∈Z−φ
π

α+
r

r
e−irσ

αr and α+
r are independent, because they involve α8

r and α9
r (αr = α8

r + α9
r).

At σ = 0: Z ∼ O(αr+α+
r ), so, Im(Z) = 0, and ∂σZ ∼ i(αr−α+

r ), so, Re(∂σZ) =
0.
At σ = π: Z ∼ (αr + α+

r )eiφ, so, Im(Ze−iφ) = 0, and ∂σZ ∼ i(αr − α+
r )eiφ, so,

Re(∂σZe
−iφ) = 0.
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10.3 Partition Function

The partition function has contributions from both the αr’s and α+
r ’s. It is

easy to see that for q = e−2πt

Z = qa
∏

r∈Z+ φ
π

(1 − qr)−1
∏

r∈Z−φ
π

(1 − qr)−1,

= qa
∞
∏

m=0

(1 − qm+ φ
π )−1

∞
∏

m=1

(1 − qm−φ
π )−1,

where a is the Casimir energy (normal ordering constant in L0 =: L0 : −a).
Recall a = −1/24 for a boson, because a = 1

2

∑∞
n=1 n = 1

2ζ(1) = −1/24. Here
the sum becomes

1

2

∑

r∈Z−φ
π

r =
1

2

∞
∑

m=1

(

m− φ

π

)

=
1

2

[

1

24
− 1

8

(

2
φ

π
− 1

)2
]

.

To prove this, look at the twisted sum problem (Polchinski 2.9.19) done last
semester.
Also,

1

2

∑

r∈Z+
φ
π

r>0

r =
1

2

∞
∑

m=0

(

m+
φ

π

)

=
1

2

[

1

24
− 1

8

(

2

(

1 − φ

π

)

− 1

)2
]

=
1

2

[

1

24
− 1

8

(

1 − 2
φ

π

)2
]

,

which is the same as before. So, a = 1
24 − 1

8

(

1 − 2φπ

)2

. Therefore,

Z = qa(1 − z)−1

[ ∞
∏

m=1

(1 − zqm)(1 − z−1qm)

]−1

, z = qφ/π = e−2φt = e2πiν

This can be expressed in terms of

ϑ11(ν, it) = −2q1/8 sinπν

∞
∏

m=1

(1 − qm)(1 − zqm)(1 − z−1qm),

and

η(it) = q1/24
∞
∏

m=1

(1 − qm).

Indeed,

η(it)

ϑ11(ν, it)
= −1

2
q−1/24−1/8−a 1

sinπν

[

∏

(1 − zqm)(1 − z−1qm)
]−1

= −1

2
q1/24−1/8−a 1 − z

sinπν
Z

= iqφ
2/2π2

Z
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Therefore

Z = −1
eφ

2t/πη(it)

ϑ11(ν, it)
.

Similarly for the fermion, we obtain

Z =
ϑab(ν, it)

eφ2t/πη(it)
,

for a, b = 0, 1 (NS-NS, NS-R, etc.)
Notice that the bosonic Z diverges as ν → 0, i.e., φ → 0. In this limit the
two branes become parallel to each other, and the string is free to move along
them, i.e., it has an additional (continuous) momentum, whose trace gives
Tr qL0 ∼ V√

8πα′t
, where V is the volume of the dimension along the brane.

Therefore,

Z = qa
1√

8π2α′t

∞
∏

m=1

(1 − qm)−2, a = 1/24− 1/8 = −1/12

=
V√

8π2α′t
(η(it))−2.

The fermionic partition functions Zab do not change. Suppose as φ → 0, both
branes are in the X8 direction. Now take the dual of X8. Since we have Neu-
mann boundary conditions in X8 (Dirichlet in X9), in the dual, we will have
Dirichlet in X8. So in the dual picture, the two branes will become distinct
points separated by a distinct y.
If originally we had Dp-branes, we end up with D(p-1) branes in the dual
space. Open strings are stretched between the two branes. Thus, instead of

a continuous momentum, we now have a contribution y2

4π2α′ in L0, therefore

e−ty
2/2πα′

, , y2 = y2
8 + y2

9 , in general. The partition function is

Z = qae−ty
2/2πα′

∞
∏

m=1

(1 − qm)−2 = e−ty
2/2πα′

(η(it))−2

Example: Consider two D4-branes at an angle φ1 in the 23-plane, φ2 in the
45-plane, φ3 in the 67-plane, φ4 in the 89-plane and separated by a ditance
y in the 1-directioin. In each plane, we obtain a partition function for the
fermions:

Zab(φi, it) =
ϑab(νi, it)

eφ
2
6
t/πη(it)

, , ν=iφit/pi, i = 1, 2, 3, 4.

Putting them together, the fermionic partition function is

Zf =
1

2

[

4
∏

i=1

ϑ00(νi, it)

eφ
2
i
t/πη(it)

−
4

∏

i=1

ϑ10(νi, it)

eφ
2
i
t/πη(it)

−
4

∏

i=1

ϑ01(νi, it)

eφ
2
i
t/πη(it)

−
4

∏

i=1

ϑ11(νi, it)

eφ
2
i
t/πη(it)

]

.
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Generalizing our earlier result, when φi = 0 = νi,

Zψ =
1

2η4(it)

(

ϑ4
00(0, iτ) − ϑ4

10(0, iτ) − ϑ4
01(0, iτ) − ϑ4

11(0, iτ)
)

.

Earlier we used the abtruse identity to show Zψ = 0. Now, we shall use the
generalization of the abstruse identity:

∞
∏

m=1

ϑ4
00(0, iτ)−

∞
∏

m=1

ϑ4
10(0, iτ)−

∞
∏

m=1

ϑ4
01(0, iτ)−

∞
∏

m=1

ϑ4
11(0, iτ) = 2

∞
∏

m=1

ϑ11(ν
′
i, it)

ν′i = iφ′it/π, φ′1 = 1
2 (φ1 + φ2 + φ3 + φ4), φ′2 = 1

2 (φ1 + φ2 − φ3 − φ4)
φ′3 = 1

2 (φ1 − φ2 + φ3 − φ4), φ′4 = 1
2 (φ1 − φ2 − φ3 + φ4)

Notice
∑4

i=1 φ
′2
i =

∑4
i=1 φ

2
i , so

∏4
i=1 e

φ2
i t/π =

∏4
i=1 e

φ′2
i tπ and

Zf =

∏4
i=1 ϑ11(ν

′
i, it)e

−φ′2
i t/π

η4(it)
.

Bosons: Recall in the 89-plane

Zboson = −ie
φ2t/πη(it)

ϑ11(ν, it)

so in the 234...9 direction

Zboson = η4(it)

4
∏

i=1

eφ
2
i t/π

ϑ11(νi, it)
.

In the 0(time)-direction, we have a continuous distribution, so Z ∼ 1√
8π2α′t

.

In the 1-direction, we have branes separated by a distance y, so L0 = y2

4π2α′ +

..., so Z1 ∼ e−ty
2/2πα′

.
Multiplying everything, the partition function becomes (potential)

V = −
∫ ∞

0

dt

t

1√
8π2α′t

e−ty
2/2πα′

4
∏

i=1

ϑ11(ν
′
i, it)

ϑ11(νi, it)

This is a complicated function of y. We will calculate it for large distances. If y
is large, the dominant contribution to the integral comes from small t (due to

the ety
2/2πα′

factor). If we set t = 0 in the ϑ-function, we obtain a constant and
the integral diverges. We will calculate the force, which is a physical quantity
and define the potential on the integral, V = −

∫

Fdy.

F = −dV
dy

= −y
∫ ∞

0

dt

πα′
e−ty

2/2πα′

√
8π2α′t

4
∏

i=1

ϑ11(ν
′
i, it)

ϑ11(νi, it)



10.4 Scattering 69

From

ϑ11(ν, it) = −2q1/8 sinπν

4
∏

m=1

(1 − qm)(1 − zqm)(1 − z−1qm),

and
ϑ11(−iν/t, i/t) = −i

√
teπν

2/tϑ11(ν, it),

we obtain
4

∏

i=1

ϑ11(ν
′
i, it)

ϑ11(νi, it)
=

4
∏

i=1

ϑ11(−iν′i/t, i/t)
ϑ11(−iνi/t, i/t)

.

As t→ 0, q = e−2π/t → 0, so Π → ∏4
i=1

sin iπν′

i/t
sin iπνi/t

νi = iφt/π → iπνi/t = −φi, Π =

4
∏

i=1

sinφ′i
sinφi

.

So

F ∼ Cy

∫ ∞

0

dt√
t
e−ty

2/2πα′

, y → ∞ const. :
1

πα′
√

8π2α′

4
∏

i=1

sinφ′i
sinφi

.

and the potential is V ∼ Cy.

10.4 Scattering

How do you make a D-brane move? Simple. Motion in e.g., the 1-direction
is motion in Minkowski space (X0, X1) just like a rotation in Euclidean space
(X8, X9) we studied above.

(

X0

X1

)

→
(

cosh ζ sinh ζ
sinh ζ cosh ζ

) (

X0

X1

)

,

(

X8

X9

)

→
(

cos ζ sin ζ
− sin ζ cos ζ

) (

X8

X9

)

.

whereX1 = vX0 and the speed (v) is defined by the rapidity (ζ) as v = tanh ζ.
The rapidity is related to the velocity via

cosh ζ =
1√

1 − v2
, sinh ζ =

v√
1 − v2

.

Consider two parallel Dp-branes moving with relative velocity v in the X1-
direction and separated by a distance y in the z-direction (branes are perpen-
dicular to bot X1 and X2). In the 01-plane (Minkowski), we may copy our
earlier result with the substitution φ = −iζ: The bosonic part of the partition
function is

Zbosonic (01) = −ie
φ2t/πη(it)

ϑ11(ν, it)
, φ = −iζ, ν = iφt/π − ζt/π.



70 UNIT 10: D-Branes

The fermionic part is

Zab =
ϑab(ν, it)

eφ2t/πη(it)
.

In the rest of the direction, the D-branes are parallel, so all other angles are
zero. Therefore, the fermionic piece is

Zf =
1

2η4(it)
e−φ

2t/π
[

ϑ00(ν, it)ϑ
3
00(0, it) − ϑ10(ν, it)ϑ

3
10(0, it)

−ϑ01(ν, it)ϑ
3
01(0, it) − ϑ11(ν, it)ϑ

3
11(0, it)

]

This may be computed by applying the generalized abstruse identity. We have

φ1 = φ, φ2 = φ3 = φ4 = 0,

so

φ′1 = φ′2 = φ′3 = φ′4 =
1

2
φ

and therefore

Zf =
1

2η4(it)
e−φ

2t/πϑ4
11(

1

2
φ, it).

The bosonic piece in the other directions (X2, X3, ..., X9 total of eight ... six
of which are transverse) is

Z bosonic

2,3,...,9
= Vp

(

1√
8π2α′t

)p

e−ty
2/2πα′

(η(it))−6

Therefore the partition function is

Z = −iVp
∫ ∞

0

dt

t
(8π2α′t)−p/2e−ty

2/2πα′ ϑ4
11(ν/2, it)

ϑ11(ν, it)
(η(it))−9, ν = ζt/π

As the branes move the distance changes to r2 = y2+v2τ2. The potential may
be extracted from

Z = −1

∫ ∞

−∞
dτV [r(τ), v].

We easily obtain

V (r, v) = i
2Vpv

(
√

8π2α′)p+1

∫ ∞

0

dt t(5−p)/2e−tr
2/2πα′ ϑ4

11(iζ/2π, i/t)

η9(i/t)ϑ11(iζ/π, i/t)
,

where we used the modular properties of the ϑ and η functions.
Note: as v → 0, u→ 0, so V → 0.
Since

ϑ11(ν, it) = −2q1/8 sinπν
∏

(1−qm)(1−zqm)(1−z−1qm), η(it) = q1/24
∏

(1−qm)
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we have, as v → 0, ν → 0, Z → 1.

ϑ4
11(iζ/2π, i/t)

η9(i/t)ϑ11(iζ/π, i/t)
=

8i sinh4(ζ/2)

sinh(ζ)
+ ... =

1

2
v3 + ..., ζ → v

So

V (r, v) = − 2Vpv
4

(
√

8π2α′)p+1

∫ ∞

0

dt t(5−p)/2e−tr
2/2πα′

+ o(v6)

∼ − v4

r7−p
Vp

α′p−3

Problem: as r → 0, V → ∞! How can string theory claim finiteness at short
distances (r is real distance - not bogus!)?

Answer: Let r → 0 before expanding in v. r only appears in e−tr
2/2πα′

. If we
rescale t→ t/r2, the r → 0 corresponds to large t. If t is large in ϑ, η, then

ϑ4
11

η9ϑ11
→ sinh4

(

vt
4

)

sinh(vt)
, ζ ∼ v

From the exponential, t ∼ 2πα′/r2 dominates. ut ∼ 2πα′u/r2, so in the limit
that r → 0, ut becomes large and the integral oscillates rapidly. OScillation on
a scale ut ∼ 1, i.e., 2πα′u ∼ r2, i.e., r ∼

√
α′v. This is the effective scale probed

by the brane: r0 =
√
α′v. A slow brane (v → 0) probes scales smaller than the

string scale! Moreover, we obtain an uncertainty in the position

δx ≥
√
α′v.

The time it takes for this scattering process is

δt ∼ δx/v

Therefore,

δxδt ≥ δx

v

√
α′v ' α′v

v
= α′.

A new uncertainty principle! It implies that coordinates do not commute! It
seems that Nature is described by noncommutative geometry. What can this
possibly mean??
Consider two branes separated by a distance y. Strings ending on the same
brane have a massless mode each, so we have two massless modes. A string
stretched between the two branes has

L0 =
y2

4π2α′ + ...

This extra term makes L0 > 0 i.e., there are no massless modes. At low ener-
gies, we only see two massless particles from the two branes. However, when
y → 0, the stretched string develops a massless mode, and there are two of
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them. So when the two branes coincide, there are four massless modes. These
four modes can be grouped into a matrix Xij in an obvious notation.
Each Xij is the position of the brane! When we develop a particle theory we
need to treat the position of the brane as a 2 × 2 matrix. More generally, n
distinct branes have n massless modes. The particle theory is just n copies
of the same theory. When all n branes coincide, we have n2 massless modes.
Each massless mode corresponds to a symmetry of the theory (U(1)). With n2

massless states the symmetry is enhanced to U(n) (n2 generators).
Familiar Examples
Photon: Fµν = ∂µAν − ∂νAµ, U(1) symmetry (Aµ → Aµ + ∂µλ).
3 Photons: F iµν = ∂µA

i
ν − ∂νA

i
µ, U(1)3 symmetry.

Weak Bosons: DemandSU(2) symmetry which has three generators, soF iµν 6=
∂µA

i
ν = ∂νA

i
µ. There is a correction, to obey the enhanced symmetry Fµν =

∂µAν − ∂νAµ + [Aµ, Aν ] (Aµ is a matrix ... Aµ = Aiµσi)
Gluons: Demand SU(3) - eight gluons (32 − 1).

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ], Aµ = Aiµλi

where λi represent the Gell-Mann matrices. The action is given by

S ∼
∫

d4x Tr FµνF
µν .

If we only had eight copies of electromagnetism, we would have

S ∼
∫

d4x Tr F iµνF
µν
i .

Now we have interactions between gluons - enhanced symmetry (gluons and
weak bosons, unlike photons have charge).
Potential: SetAµ =constant, then

Tr FµνF
µν ∼ Tr [Aµ, Aν ]

2.

Back to D-branes: Xµ is like aµ (that can be made precise - see Polchinski
8.6). So the enhanced symmetry contains a potential

V ∼ Tr [Xµ, Xν ]2

where µ, ν run over that dimension transverse to the branes. Expand around
Xµ = 0 in a Taylor series. There are no linear or quadratic terms in Xµ, so
there is no mass term (which would come from V (φ) = V (0) + V ′(0)φ +
1
2V

′′(0)φ2/m2 + ...)
So we have kn2 massless modes, where k is the number of transverse dimen-
sions. Also, V = 0 if and only if all [Xm, Xn] = 0, i.e., all Xm commute. This
can be accomplished if we make them all diagonal. There are n diagonal el-
ements, each corresponding to one of the D-branes. Thus this potential cor-
rectly describes n coincident non-interacting free D-branes.


