String Theory 11

GEORGE SIOPSIS AND STUDENTS

Department of Physics and Astronomy
The University of Tennessee
Knoxville, TN 37996-1200
U.S.A.

e-mail: siopsis@tennessee.edu

Last update: 2006



ii



Contents

7 Superstrings 25
7.1 Bosonsandfermions . ... ........... ... ... 25
7.2 Theghosts . . ... ... ... . ... .. 28
7.3 ModeExpansions . ... .. ... . ... ... ... 29
74 OpenStrings . . . . . . . ... 33
7.5 TheRamond (R)sector . .. .. ... ................ 38
7.6 Superstring Theories . . ... ... ... ... ... ....... 40



UNIT 7

Superstrings

7.1 Bosons and fermions

Bosonic strings have the action

1
2ma!

S = / d?20X"0X,,.

We wish to build a theory that has supersymmetry (SUSY). Why? It turns out
that this is the only (known) way of obtaining a consistent theory.

For SUSY, each boson (commuting field), must have a fermionic (anticom-
muting) counterpart. We have already seen anticommuting fields. We called
them b, c. Recall the b, c action

1 _
Spe = — / d?zbe.
27

and their OPEs are .

b(z)c(0) ~ g
The wave equation was given by 9b = dc = 0, i.e., b and c are purely holomor-

phic. The energy-momentum tensor is

T =: (0b)c: —AO(: be:)
where we assume the weights b, = A\, h. = 1 — A. The OPE for the energy-
momentum tensor is

c 2

T(E)T(0) ~ 5o + 5T(0) + %8T(O)

where ¢ = —3(2)\ — 1)? + 1. Earlier we required A = 2, so ¢ = —26 (hence
D = 26 for the bosonic string) in order to do BRST quantization properly
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(Q% rsr = 0). Amore symmetric choiceis A = 1. Then h, = h, = 1 and ¢ = 1.
Define

b= %(1% +i¢2), C:%(¢1_iw2)'

Then the action is
5= — / 22bde — L / (101 + 20ib2).
27‘(‘ 47T

The stress-energy tensor written in terms if the new fields may be expressed
as

T(z) = _%w18¢1 - %waiﬁz-

The system splits into two identical copies. Since ¢ = 1, for the two together,
each system has ¢ = .

Pick one such system, iy = 11, say. Make D copies of it, v — " (u =
0,1,...,D —1) and let us try ¢* as a SUSY partner of X*.

The stress-energ tensor is given by
1 I3 1 I3

The TT OPE becomes

(3D/2)
224

T(:)T(0) ~ + Z%T(O) + %aT(O)

where we used
— v O/ v 2 v 1 v
X0z, 2)X7(0,0) ~ =S |22, ()07 (0) ~ —n.

T(z) is a conserved current that generates conformal transformations which
are symmetries of the theory (in fact v(2)T'(z) is conserved for arbitrary v(z),
leading to an infinite number of symmetries). The new theory (X*, ") has
even more symmetries! Let us define a supercurrent as

Tr = i\/%w“(z)aXu(z)

Any 7(2)Tr(2) is conserved and generates a symmetry mixing X * and ¢* (su-
perconformal transformation) - » must be anticommuting so that T’ is com-
muting. To see this consider

Te()XH(0,0) ~ —iy| T 520 (0) = —iy/ S 26 0)

Tr(2)oh(0) ~ i\/glamo,m
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So

SXH = —ie 74 )Tz )X”<o7o>=—@enw*‘<0>

Syt = _ief%n(z)Tp(z)¢“(0) = _\/genaX“(0,0)

The other OPEs are given by

T()Tr(0) ~ 2 (-%) <2 %) (%152 1n|z|> OXH (=), (0) + (—%) (z %) (a%) W (2)0X,.(0)

+ (g) ( %) S0, ()05 (0)

T()Tr(0) ~ 7TF(O)+§8TF(O)

2 2
CJal\ 1 (d A T

D
~ ;‘f’ T(O)

The first OPE shows that T has weight h = 3/2. There is a corresponding
construction for the anti-holomorphic operators. Since ¢* is holomorphic,
we need to add a new anti-holomorphic fermionic field ¢ (z) with the action

S = L / A2,
The wave equation is given by
O, =0,
so, indeed zﬁ“ is anti-holomorphic. They OPE is
~ ~ 1
P (0) ~ S

The stress-energy tensors are

. 1. - . -
T = —§¢“3w#, TF =1 Ew“aXu

The OPEs are similar to the OPEs of their holomorphic counterparts. Notice
that the central charge for this theory is ¢ = 3D/2. This is now a superconfor-
mal theory (N =1, N = 1 where N, N counts the number of Ty, Tr’s). Other
examples
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7.2 The ghosts
Recall,
Spo = 2i / Ebde, T =(@b)c— be),  b(x)e(0) ~ %
™

The weights and central charge for the bc system are
hy =X, he=1-X\ cpe=-32\—1)+1.

Since (b, ¢) are anti-commuting fields, their partners will have to be commut-
ing. We have already met them. They are the (3, «) fields with action

1 _
S = 5 [ 2007,

which is the same action as the bc action. Let hg = X, h, = 1 — X. The
combined system will have SUSY if we can find a T'» that mixes b, c with 3, .
Such a T'» will most likely contain a (93)c (c.f. (0b)c in T and (05)y in T,

Ty, = (08)7 — NO(57).

Since h = 3/2for T, weneed 1 + X +1— X = 3/2,i.e, N = XA —1/2. The
central charge is

coy =32N —1)2—1=3(21-2)* - 1.
The central charge for the combination of the two systems becomes
Ctotal = Chc + Cpy = _3(2>\ - 1)2 + 3(2A/ - 2)2 = 3(3 — 4)\)

For the special (interesting) case A = 2, in which ¢;,. = —26 (hence d = 26 for
bosonic strings), we have ciota) = 3(3—4x2) = —15. If we combine this system
with the (X*, ¢#, zﬁ“), for which ¢ = 3D/2 and demand cota1 = 0, we need
3D/2 —15 =0 = D = 10. Therefore superstrings must live in 10-dimensions.

Linear Dilaton

Recall .
T(z) = ——0X"0X, + V,0° X",
(&%

where V), is a fixed vector (breaking translational invariance). The central
charge for this theory is

c=D+6a'VFV,.
By adding the fermion ¢*, with T = —1¢*8+,, and ¢ = D /2, we obtain

3D
c= 7 + GO/VMVM,

and

Tp = iy/ E,WaXM — V20V, 00"
«
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7.3 Mode Expansions

Let us do closed strings first. Recall the expansion
OXH(2) = —iy]| L3 b oomt
(z) = —i e Xm: okt z ,

where of = \/gp“ and [a,, a¥] = mn" b 4n,0. X" obeys periodic boundary
conditions. We could have imposed anti-periodic boundary conditions on
X*, and we did so with U (the compactified coordinate) and got an orbifold,
but this breaks translational invariance. That is ok for dimensions we cannot
see (e.g., compactified), but not for the four dimensions that describe our
space-time. ¢* and ¢* on the other hand have no such concerns (also note
the absence of a spin-statistics theorem in two-dimensions), so we have two
possibilities.

e anti-periodic boundary conditions (Neveu-Schwarz (NS)): v# (o +27) =
— )t (o).
e periodic boundary conditions (Ramond (R)): ¥*(o + 27) = y* (o).

These have two distinct Hilbert spaces (sectors). There are also two Hilbert

spaces for 1)*, so in all there are four Hilbert spaces (sectors): NS-NS, R-NS,

NS-R, R-R.

Let us first describe ¥ in NS. ¢* is a function of ¢ + 7. When expanding

in Fourier modes, because of anti-periodicity, only the terms e —*(2m+1)(o+7)/2

contribute (since ¢ — g+2r = ¢~ {ZMAN(EFT)/2 _, mmi2mAL) o —i(2mA1)(o47)/2)
Definer =m+1/2€ Z+1/2, then

ProtT) = Vi YD e

reZ+3

where the factor of v/i was introduced for convenience. Transforming to the
z-picture, z = ¢(°*t7) we have

ow\"
we = (52) v
1
= ﬁ¢”(0+7)
= Y e
reZ+i

which is a Laurent expansion. We saw the same in terms of the X * field. We
obtain anti-commutation relations of the ¢* fields by analyzing the OPE

Y (0) ~ S
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The anti-commutation relations are

{@[Jﬁ, "/]su} = "7NV5T+S,0'

We find similar results for the right-moving sector

PO Y deh axee =Y Yt
reZ+1 mezZ
and the anti-commutation relations are
{&fa zﬁs”} =0""0r45,0-
The stress-energy tensor is
T(z) =Y Lpnz "7, h=2.

meZ

The OPE gives the Virasoro algebra with central extension

C
—m(m — 1)(771 + 1)6771—&-71,0-

LmaLn = - Lm n
[ J=(m—n)Lm+ +12

In terms of the OPEs we find
3 1
Tr(2)Tr(0) ~ 2—22TF(0) + ;aTF(O)
We may expand T'»(z) in terms of modes

Tr(z) = Z G275,

rezZ+i

Recall )
[Lin, Grl = ((h—=1)m —7)Grim = (§m —7)Grim-

Finally

D 2 3D 2c

Tr(2)Tr(2") ~ CEEIERE

Find the anit-commutator {G,, G} in two steps. First

dz +1
r = TR ;
G 2m_r 2Tr(2)

and

D
f—dz ZT+%TF(Z)TF(Z/) = _dZ Zr+%
271,

r
5 [CEraE + 222 T(2)
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SO
?{ dz ... D D 1
—2Z 2 —_— = JR——
2mi (z—2)3 2 4

Second step: apply § 5= dz /53 to isolate G:

D 2 dZ /r+s 1 % /r+s+1
NG} o= o (-2 T(z
{Gr G} 2 (T 4) f{ omi ()

D 1
= 2Lr+s + 5 <7~2 — Z) 6T+S,0

= 2Lyt — (42 = 1) by pap

12

The algebra of (L,,,, G;) closes, as expected: NS algebra. Next, let us study the
mode expansion: using

oxP = - f S aks el gr= 3 gparh

meZ T‘EZ+%

and
1 1 1 1
T(2) = ——0X X, — g0y = ——0X OX, — ("0, — (00" )

we have

dZ m—+1 1 dZ N —n—n'—m-—1 —r—r'4+m—1
L, = j{2m T(z) = 2; 5y On O u% + - 2%27”1& Ypp(r — 1)z

Sl S (20— )t

nez re€zZ+3
TF(Z) = “/zwuaX -G = dz r+2TF —a“a " —ntr+r—1 Za "
o a " 27 r—n -

neEZ

Normal ordering: No question in G, ¥V r and L,,, V m 7é 0. Potential problem
with Ly. After normal ordering, we get Lo + a where « is a constant to be
determined. To determine a, look at [Ly,L_4] = 2L,. We have L;|0) = 0, so
(O[[Ly, L_1][0) = (O[Z1 L1]]0) = ||L_1]0)][2, because L, = L;.
Now L_1]0) = 3> o anul0) + 2 3°(2r 4+ 1)9", _ 4,,|0) There are non-
vanishing terms only if —-n—1 < 0n < 0,1i.e.,0 < n < —1 which is impossible!
Also 0 < r < —1, which implies » = 1/2, butthen 2r+1 = 0, so it also vanishes.
Therefore

L_4]0) =0, IL-1[0)|]* =0
S0

(012Lo|0) =2a =0 = a=0.

In the above, we used a#|0) = ¥#|0), n,r > 0, and the hermicity property,
(k) = ot (W) = v
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The ghosts

The ghost system (b, ¢; 3, ) is a superconformal system on its own right. It is
opposite to (X* ¢*) in that the role of X* is played by the fermionic (b, ¢).
So b, ¢, obey periodic boundary conditions (necessary due to definition of
Q@prst)- Then (5,~) may obey periodic (R) or anti-periodic (NS) boundary
conditions. Let us do NS first. Recall

1
hp=X he=1-X hg=X, hy=1-X, X=X~z

We are interested in the A\ = 2 case, in order to couple this system to the
(X*, ") system. Then

3
hy=2 he=1-1, hy=5, hy=—3

and the expansions are

TR I T D Ea N D

meZ meZ T’EZ-{-% T€Z+%
From the operator product expansions, we get standard (anti) commutators

{b7m Cn} = 5m+n,Oa [’Yra ﬂs] = 5r+s,0-

bm, ¢m, Br, - are all annihilation operators for r,m > 0. Recall the subtlety
with the zero modes by, ¢, satisfying {bg, co} = 1. We have two choices for the
vacuum. Choose ¢|0) = 0. The conformal generators are

L, = 74 ﬁzmHT(z),

271

T(z) = (0b)c—Ad(be)+ (98)y — A'O(B7)
= (@V)e—20(be) + (98)1 ~ 50(5)
- Z(—n’ — Dbz Bz —2(—n— 1 — Dbz 2

3 1_5 3 ’
+Z (—7‘/ - 5) Briz™" 7§7T27T+% — 5(_7a — = 1)ﬁrl,\/rzfr7r -2

/ 1 /
_ Z(n/ + 2n)bn/ccz—n—n —2 + 5 Z(3T + T/)ﬂr/")/rz_r_r —2
n,n’ rr!

So

dz i1 1
Lm = % %Z T(Z) = ;(m + n)bm—ncn + 5 zr:(m + 2T)6771—r7r
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The SUSY generators are
dz r4 1 /
G, = 3mi? 2TF( ), Tr(z) = —g(aﬁ)c + A'0(Bc) — 2by
where

1 3 5 3 1
Tr(z) = Z b (—8 - 5) Bez ™ Tenz M 4 3 (—s -n-— 5) Bynz™57"7% — 2byys2

s,n

1 s
= Z —5(25 4 3n)BeCnz 58 — Bbyyez TR

s,n

So

dz

1
G, = %Z”‘%TF (z2) = — ; 3 (21 + 1) Br—nCn + 2bpYr—n-

Normal ordering: again, only L, has a problem; should be Ly + a. To find q,
consider [L1, L_1] = 2Ly.

L_|= Z(n —Db_1_nen + %Z(% — DBy

n

When applied to the ground state, |0), only the termsn = -1, r = —1/2
contribute (recall ¢o|0) = 0), s0 L _1]0) = —2bgc_1]0) —f_1/27-1/2/0). Similarly,
we obtain (0[c_1 = (0[(2b1co + B1/271/2)- SO

(O[[L1, L1]|0) = (0| L1 L-1]0) = —2{0|(brcoboc—1—B1v1 B_17-1]0) = =2+1 = —1.

So 2a = (0|2Ly|0) = —1,s0a = —1/2 (—1 from the bc and 1/2 from the 7).

7.4 Open Strings

Open strings do not have independent ocsillators o, a#. Instead, ot = &k.
Thus,

GX“ \/7204 z m77 8XM \/720[771

where off = V2a/p* (cf. off = (/% p" for closed strings). Similarly for the

LR
SOED I Z e A OE D DL

—n

_s_3

2
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The spectrum

For a physical state, |¢), we demand
Lu|p) = Grl¢p) =0, forr,n>0.

Also, L_,|¢), G,|¢) are orthogonal to all physical states [¢)') : (¢'|L_,|¢) =
(¥|Lply') = 0, and similarly for G,|¢). They are in the equivalence class of
zero. Check also L_,|¢) isnull: ||L_,[)||* = 0. Physical states also obey the

constraint .
(Lo — 5) lv) =0

i.e., the Hamiltonian H = Ly, — 1/2 = 0 (vanishes).

We build the Hilbert space by applying o, , 1", oscillators only (no ghost
modes- the lead to states in the same equivalence classes as above) to the
ground state.

1 1 1
H:§Z:a’ina,L#:+§Zr:¢ﬁr¢w:—§

nez r

plus the ghost oscillators, but they do not contribute. Since oy = v2a/p* for
open strings, we have

H:o/pQ—i—N—é, N:Za’inaw—i—Zm{J’irwm.
n=1 r:%

The lowest state: |0; k) for which N = 0, so o/k? — 1/2 = 0, so m? = —k? =
—1/2a/, atachyon!

So we still have a tachyon. This was to be expected, because we took the
bosonic theory and enlarged it therefore we should expect the new SUSY the-
ory to contain all the states of the bosonic theory and more.

The next state: |1)

Au(/f)wi% |0; k)

has N = % We see that this is a massless state since

=0, = m?>=—-k*=0.

N~

1
/k2 -
a +2

Also, G, = ), ahtpr_n,, S0 when G /5 acts on our state, only the n = 0 term
contributes. So

G1|l) = agAu(k)|0; k) = V2a'k - AJ0;k) =0, = k- A=0,
i.e., transverse polarization. Also note that this is a null state:

G_1]0;k) = afib_1,[0;k) = V2a'k - 9p_1]0; k)
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i.e., the state with longitudinal polarization is null (and orthogonal to all phys-
ical states).

Thus the massless state is a D —2 = 8 dimensional vector. It transforms under
the group SO(8). For closed strings, the situation is similar.

The H = 0 constraint translates into Ly = Ly = 0, i.e.,

o 1 o -

1 2 =0

N~

Notice the difference in o/p? — O‘T,p2, which is due to the different definitions
of af) between closed and open string.

The lowest state: |0; k) with k2 = L, so m? = —k® = — 2 which is a tachyon!
The next level: Aww’jl/2wil/2|0;k>, with %kg = 0, i.e., m? = 0. This de-
omposes into a scalar, an antisymmetric tensor, and a traceless symmetric
tensor:

1 1 1
A = mAznw + 5(14;“/ —Ayp) + §(AW + Avp +

2

D g0

SectionGetting rid of the tachyon Comparing the tachyon with the massless
states, there is a clear difference: the tachyon has one less fermionic excita-
tion then the massless states. If we select the states with as odd number of
fermionic excitations, that will get rid of the tachyon. This is similar to the
harmonic oscillator, where we could select, e.g., all the odd states and still
have a perfectly well defined physical system.

The operator that did the trick there was P (parity) which commuted with
the Hamiltonian and could therefore be simultaneously diagonalized with it.
Here we need to find an operator that has two eigenvalues and commutes
with all generators of space-time symmetries (not just the Hamiltonian). The
space-time symmetries from the Lorentz group (Poincare group rather, but
Lorentz suffices). Let us review briefly. The angular momentum L = 7 x §. In
terms of components we have

Lw:ypz_zpya Lyzzpw_fpza Lz:xpy_ypm'

where z and p obey the commutation relations [x;, p;] = d;;.
Define the antisymmetric tensor L;; = x;p; —x;p;, then L; = %eijk Lji. Anan-

tisymmetric tensor is a vector in three-dimensions. Not so in four-dimensions.

So generalize L;; — L., = x,py — TuPp, [Ty, Pu] = i1, Which includes time.
L generates rotations:
5 _ i kl L _
XTq = —§w [ klaxi] = WijTy
where w;; is an anti-symmetric tensor. In terms of the vector & we have 6z =
& x &. This generalizes to L, : 6z, = wy,2”. Fore.g., Lo, we have §t =
wo1Z, 0x = —wp1t, a boost! Ly, is a boost in the x;-direction. The algebra of
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these Lorentz generators is

[Lm/a Lpo'] = [xupu — LvPu, LpPo — Q'Upp]

= i(anLuU - nupLuo - nuoLup + nuo'LVp)

Lie algebra of SO(3, 1), or in D-dimensions, SO(D — 1,1). Introduce spinors:
we need to add a piece to L, that will rotate the spinor (or boost it). Call
this piece ¥,,. It needs to satisfy the same SO(D — 1,1) algebra and will
commute with L,, by constuction (since L,, involves space-time and X,
involves fermionic operators).

Guess: _
v N v ? v
W= URt = =5 2 )
Then the algebra is
1
[ij, EPU] = 1 <Z[ " ’l/JiT], Z[ g, wzs])

- (Z YEP” > Y, w;)
= Q(nPEHT — pHPYVT  pPINHP T RVP)

where we used {¢¥, 9%} = " 0,45.0-
Y# generates Lorentz transformations on the fermionic fields ¢*(z). No-
tice that in D = 10, there are five operators that commute with each other:
YO 323 3345 367 3389 (trivial - they contain different ¢* modes). They can
be simultaneously diagonalized. How do they act? Let us be specific and con-
sider ¥23, It acts on 2, 2 as follows:

(2292 = =i WP, 0 ==Y (U2 Rt = iy
R R R
Eigenstates: 12 + i3, 2 — iy?.

(S ¢2 +il] = o+ iy eigenvalue: +1

[2237¢f - Wﬂ = _¢3 + i@/}f eigenvalue : —1
Consider a finite transformation (rotation) U(¢) = ¢/>". Then U(6)(42 +
WHUT(0) = e (47 +i}).
Proof:

P2 +id) = (P +ipd)(1+ %) = (82)" (2 + iyl = (7 +iypd) (1+ )"

= UO)2 +ip?)UT(0) = (92 + ig?)e? 07 = ¢ (92 1 iU (0).



7.4 Open Strings

37

Similarly, U(0)(v2 + i92)UT(0) = e~*(2 + i¢3). In particular, for 6 = m,
the action of U(7) on both 12 + i1? is the same. Therefore U (7)y22UT (7)) =
e™p23 = —p23 i.e., U(r) and 12>? anti-commute!

On the other hand U (7) commutes with all other ¢#, p # 2, 3. Thus U () only
has two eigenvalues, +1, like parity! If a state has an even number of )2, 3’s
(r > 0), then it belongs to eigenvalue +1 - with an odd number of wg_f s, it has
U(r)=—-1.E.g:

$2,10) © U(my2,|0) = —¢2,U(m)|0) = —¢2,|0) : (~1)
U(m2, 92,100 = =2, U@, [0) = 92,42, ]0) (+1)

etc.
We can do the same with all other ¥’s. Thus we have

Ui(r) = €™, Us(m) = €™, Us(n) = ™", Uy(n) = ™", Us(m) = ™"

Notice that U; () has no i in the exponential. This is because {¢?, 4%} =
—dr45,0- The product

U1 (7T)U2 (7T)U5 (ﬂ') — eiﬂ(—izol+223+E45+EG7+289) _ eiﬂ’F.

This anti-commutes with all ). F is a fermion number operator. ‘" will play
the role of parity in the harmonic oscillator case. Correction: eV, will. V,
is the ghost contribution. Since there are no ghost oscillators, all it does is act
on the vacuum: V,,|0) = —|0). Thus restrict Hilbert space to eigenstates of
eV, of eigenvalue +1 (invariant states). This gets rid of the tachyon, for
e™ Ve |0; k) = —|0; k) but keeps all massless states ¢‘_‘1/2|0; k).

Consistent truncation

Since ¢"f" is made of Lorentz generators it is guaranteed to be conserved by
the OPEs of vertex operators. So even states will produce even states when
they interact with other even states.

Thus, we now have a consistent string theory without a tachyon! Or do we?
We still need to check modular invariance. The X * part of the partition func-
tion is modular invariant by itself,

1
2w/ o

the fermionic part of the partition function is similarly calculated. The result
is a Jacobi-theta function. But, alas, it is not modular invariant. This can be
seen without doing any calculation as follows.

Before we demanded ¢* (¢ + 27) = —¢* (o) (anti-periodic boundary condi-
tions). On a torus, we demand ¢*(z + 27) = —¢*(z) and also ¥*(z + 277) =
—1*(z). But then,

Yz +2n(T + 1)) = —¢p* (2 + 277) = +H(2).

D o ‘
zx(r) = ( @) aa) = T, g = e
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Therefore the transformation + — 7 + 1 changes the boundary conditions
to periodic! Therefore 7 — 7 + 1 is not a symmetry of the theory. Our the-
ory is not modular invariant. The above argument also shows how to fix the
theory. We need to include (somehow) the sector in which )* obeys periodic
boundary conditions. That is the Ramond sector and we study it next.

7.5 The Ramond (R) sector

The R-sector can only exist in two-dimensions, because there is no spin-statistics

theorem there. The mode expansion is

Pr(z) = ke

neEZ

indices are integers, since *(z) is periodic. The expansion has a factor of
271/2, because the weight of 1/* is h = 1/2. Therefore this is not a Laurent
expansion and has a branch cut. We still have

{wﬁw ¢Z} = 77”V5m+n,o

as in the NS-sector. We also have the same algebra for L,,, G, (note it is now
Gm, m € Z).

Normal ordering
We only have a problem with L. Using [L1, L_1] = 2L, we have
2(0|Lo|0) = (0] L+1L-1]0),

L—1|0> = <% Z O/il—no‘nu + i 2(277“ + 1)wil—nwnﬂ> |O>

For the o’'s we need —1 — n, n < 0, s0 —1 < n < 0, which is impossible. For
the ¢’s, weneed —1 —n, n <0,s0 -1 <n <0,son =0, orn = —1. Therefore

L_4]0) = i (=1 + " o) 10) = %w‘iﬁbwm%
Therefore
(OIL1L-1[0) = —{Olthorthy ¥’ 1400, 0),
(0]2§ 2P0, |0)

(O{t, You }10)

Ol — x| = x| =

e

Therefore (0|Lo|0) = D/16 = a (i.e., Lo =: Lo : —D/16).
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The ghosts
—m— _ _r_3 — 1
b:meZ m 2’ C:ZCmZ m+1’ 6: Z ﬂrz r 3,y = Z Yz r+3
meZ meZ T€Z+% T€Z+%

where 3, v are not Laurent expansions. The algebras are

{bma Cn} = 5m+n,0, [7771, ﬂn] = 6m+n,0,

which are the same as before, but in addition, the zero modes: [y, 5] = 1,
i.e., 70, (o are creation and annihilation operators respectively. This define
|0) by b,,]0) = 0, m > 0, B|0) =0, m > 0and ¢,|0) == g,,|0) = 0 for
m > 0.

Normal ordering

Ly again has a problem. We can solve as we did before.

L_1|0> = <Z(n - l)b—ln—lcn + %Z(Zn — 1)ﬂ_n_1’}/n> |0>

n

<—b100 - %ﬂl’)@) 0)

There is only one possibility since —1 < n < 0, so

1
(0|L1L_1]0) = —{0]boc1b—1¢0]0) — Z<0|ﬁ07157170|0>
1 5
= "lmg=y
and
1 5
<O|LO|O> - §<O|L1L_1|O> = —— = Q.
8
The spectrum

First observe that the defintion |0) is ambiguous. Indeed |0) is defined by
Yk 10), m > 0. But then ¢{|0) is as good as |0), for 2, ¢§|0) = —ygvk|0) =
0, m > 0. the ground state is then a representation of the algebra of the zero
modes, {¢f,¢§} = n* (Clifford - Dirac algebra). |0) therefore is a spinor.
Instead of one spin, here we have five, because we are in ten-dimensions.
The spin operators are $.0!, 23 345 3167 3389 They commute with each other
so they can be simultaneously diagonalized. We can then define a basis of
ground states |s1, so, S3, 84, S5) Where s; = +1/2(i = 1,2,3,4,5). We will use
the notation § = (s, s2, 83, 84, $5). There are 2° = 32 such states (c.f. 22 = 4
states in the four-dimensional Dirac spinor). All states built from |3) have
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integer +1/2 spin, because ", has spin one (eigenstate of S¥XXX+1 with
eigenvalue +1). to be contrasted with NS-sector where all states have integer
spin. Thus, the inclusion of the R-sector is important, because we need all
spins to describe Nature.

The Hamiltonian (L) has const. D/16 — 5/8 = 10/16 — 5/8 = 0, so H =
a'p? + N (cf. H = o/p? + N — 1/2in the NS-sector)

Thelowestlevel: N = 0,s0 H = 0and m? = —p? = 0. There is no tachyon! The
lowest states, |0; k) are massless! Non-trivial constraint: G|s; k) = 0. Relevant
piece: Gy = V2a/p, ), so k,l|5; k) = 0 which is the Dirac equation (y* =
%wg‘, then k,9*|5; k) = 0). Notice also that the algebra {G,, Go} = 2L, i.e.,
G?2 = Lo. Gy is the square root of the Hamiltonian!

This is just like in the Dirac case. It is also a generic feature of a SUSY theory:
the Hamiltonian can be written as the square of a SUSY charge.

Notice that this also implies that the ground state has zero eigenvalue, be-
cause G|0) = 0, which makes it very hard to have a finite cosmological con-
stant in a SUSY theory. In terms of the fields, the contribution of the boson
always exactly cancels the contribution of the fermions (due to SUSY boson
— fermion) and we get zero vacuum expectation energy (cosmological con-
stant). The R-sector can also be split into two eigenspaces of ™" with eigen-
values +1. The ground states belongs to +1.

7.6 Superstring Theories

We may now combine the NS and R-sectors to form a consistent superstring
theory. We need to have analycity in the OPEs (which is not guaranteed in
the R-sector, due to branch cuts in the expansions of the fields). This severely
constrains the possibilities (we also do not want a tachyon) to ...

ITA: (NS+,NS+) (R+,NS+) (NS+,R-) (R+,R-)
IT1B: (NS+4,NS+) (R+,NS+) (NS+,R+) (R+,R+)
I7A": (NS+,NS+) (R—,NS+) (NS+,R+) (R—,R+)
IIB': (NS+,NS+) (R—,NS+) (NS+,R—) (R—,R-)

It can be shown that 774’ is the same as IT A (also, similarly, /7B’ is the same
as I1B)

Proof: Transform X° — —X?°, 19 — —¢°, 1? — —¢°. Then ™5~ — ¢—ims™
(same eigenvalue), but $8°|0) — —S58%|0), so the sign is reversed in the R-
sector (S% annihilates the NS vacuum (no zero modes), so no change there).
Therefore this transformation maps R+ — R— and vice versa. QED

Open Strings

Only one possibilty: type I: NS+,R+. The projection of eigenspaces of ¢'"* and
™ is known as the Gliozzi-Scherk-Olive (GSO) projection.
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The resulting theories turn out to have space-time SUSY and obey the spin-
statisics theorem (which has to be obeyed for D > 2). The fact that space-
time SUSY and the spin-statistics theorem emerge is rather unexpected. One
would expect that these two should be evident from the start - built in formal-
ism. This fact remains elusive.

Modular Invariance

We have already seen that modular invariance for the NS-NS sector alone
cannot possibly work. Now we have a multitude of sectors and a hope that
modular transformations will map one onto others and somehow the combi-
nation will be invariant. Let us start with the NS-sector. Only the NS+ subsec-
tor appears. The partition function for the X#’s is the same as before and we
have already established it is modular invariance, so we will concentrate on
the ¢"’s.
The partition function is as always
ZNS+ — Tr (qH)’ q= 6271'1'7-.
If [¢) is in NS+, then ™ |) = |¢). To find such a |¢), we can start with an
arbitrary state |¢') and project onto the eigenspace of e™¥" of eigenvalue +1.
The projection operator is

Also, e P|y') = P|y'), so eigenvalue +1. Thus, to compute the Tr y5(PA) =
1Tr ysA+ $Tr ns(e™F A). First trace: for each p1, we have the creation oper-
ators 9", r > 0 where of course r € Z + 3. A state can have 0 or 14", since
(¢",)? = 0 (fermionic mode). So for fixed r, u we get a factor ¢° + ¢" = 1 + ¢"
(since N = 0, r) the rest of H has already been considered in the X * part).
Varying r, we get a product

[Ta+q¢) =

r>0 m

(1 + qm—1/2).

3

1

Varying u, we get eight copies of this product (because only the transverse p's
contribute and there are 10 — 2 = 8 of them). Thus

00 8

m=1

NB the factor of ¢—'/4® which comes from the new tensor transformation of
T (stress-energy “tensor”) as we go from z to o + 7 (z = ¢*“+7)) c.f. in the
bosonic case we got ¢—'/?4, double becuase for a boson ¢ = 1 whereas for a
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fermion ¢ = 1/2. We can write this partiion function in terms of the Jacobi
Y-function. Recall ... (z = 2™, ¢ = 2™7)

doo(v,7) = ﬁ (1= g™ +2¢" ) (1427177
m=1
dor(v,7) = ]O_o[ (1—q™(1—2q"2)(1 =2 g" 12
m=1
V1o(v,7) = 2e™7/*cosr H (1—q™)(1 + 2¢™) (1 + 2" 1¢™)
m=1
Y(v,7) = —2e™sinmy H (1—¢™(1 —2¢™)(1 — 2" 1¢™)
m=1
Forv =0, z=1,s0
dln) = [0 - +a™ )0+
m=1
doi(v,7) = ﬁ (1—g™)(1—g™ )1 =g 1/
m=1
do(v,m) = 2¢"5 [[A=g™ @ +¢™ 1 +q™)
m=1
V11(v,7) = —2¢"Ssinx0 [T (1—¢™(@ - ™)@ —¢™) =0

m=1
Also (1) = ¢"/?* T[°_, (1 — ¢™). Thus,

o0

2
Po0(0,7) = ¢~ /*n(7) ( [Ta+ qm‘1/2)> :

m=1
50 Yoo (0
Tr nsq" = (700( 77—)) .

n(7)
Next, let us do Tr yse™ ¢, Let us fix u and r again. If the state has zero
Y 'sthen F = 0and N = 0. So we get ¢° = 1. If the state has one ¢" ., then
el = —1 (recall ey e~ = —¢p* Yand N = r, so we get —q".
So this case differs from the previous one by a mere sign change which implies
that 9o — 9o1. Moreover, the ground state |0) has eigenvalue —1 (e |0) x5 =
—|0)vs), so we get an overall “-” sign. Thus

4
Tr nge™F gt = — (1901(0, T))
n(7)
Similarly, in the Ramond sector,

Zpy = Tr gy Pg" = = (Tt g™ + Tr ge™F¢").

N~
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The creation modes are ", ,m > 0 and we need to take special care of the
zero modes ).

Fix  and m > 0. Then, for zero ¢, ’s, we obtain ¢° = 1 and for one ¢™  u, we
obtain ¢, so overall, 1 + ¢™. The ground state has energy H = 1/16 (normal
ordering constant we obtained earlier, so 1 + ¢ — ¢'/15(1 4 ¢™). Varying
1, m we obtain the product

oo

8
) <o

m=1

Sl

Tr pg” = <q116q‘

where “0” is the contribution of the zero-modes. Recall the ground state |s).
Consider the X3 spin, for example. There are two states | 1), | |), with spin
i% respectively. Each contributes 1, so overall 1 + 1 = 2. we have four inde-
pendent such states (since we have eight transverse dimensions ¥°! does not
produce independent physical states). Therefore the overall factor “0” = 24
c.f. with

901(0,7) = 2¢"/° TT (1 =™ (1 + ™) = 245~ *4(7) ( [Ta+ qm))

m=1 m=1

4

Tr g = [ 2"/841/24 (ﬁ (1+ qm)> _ <191;J]E?-7)T)>4

m=1

where the minus sign comes from space-time spin-statistics (ghosts). Finally,
Tr re’™F'¢* gives a similar product, but with two changes

e 1+¢™ —1—¢™ (- forme™F, as in NS-sector

e | 1) and | |) have opposite eigenvalues, contributing 1 — 1 = 0!

Therefore A
¥
Tr g =g = - (L(O”)) —0.
n(7)
Putting everything together, the partition function for ¢)* in NS+ and R+ sec-
tor is
Zy(r) = Trnsrq” +Tr rrg”

1 1 1 1 .
= STr ysg"” +Tr ns=e™ g + - Tr gg" + STr ge™ "
2 2 2 2
1

_ 4 4 4 4

= 2(77(7‘)4 (1900(0, 7') — 1901(0, T) — 1910(0, 7') + 1911(0, T) ) .
This is complicated combination of Jacobi-theta functions, yet not only is it
modular invariant, but it vanishes identically! This should not be too surpris-
ing, since we have space-time SUSY and so the cosmological constant should
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vanish. This fact was known to Jacobi himself, for he proved the “abstruse
identity”
1900(0, 7')4 — 1901(0, 7')4 — 1910(0, 7')4 = O,

and we have already seen 91, (0, 7)* = 0.
Of course the total Z is a product of Zy and Z_. = Z in the case of IIB and

(lep)* = ﬁ (1900(077')4 — 1901(0,7')4 — 1910(077')4 — 1911(0,7')4)

which of course Z;, = Zy.

Modular invariance of type-1

Type-1is an open string theory. Instead of a torus, we have a cylinder.
The cylinder can easily be deduced from the torus. Recall for the torus

R e e N
F 47—2

where F} is the fundamental region and ‘Z—Td; is a modular invariant mea-
sure on the torus (m2(27)? is the volume of the torus = volume of the group
of translations). The cylinder defines a more honest partition function, be-
cause T —t € Rand Z(t) = Tr ¢, ¢ =e72™,ie, 7 = imy, 2 = t, and

Z = /00 ﬂTr e 2mtlo,
0 2t

Notice that thee is no fundamental region, so we have potential divergences
from both limits ¢t — co and ¢ — 0. ¢ — oo is usually associated with the
IR region (long-distance, low energy). ¢ — 0 is associated with UV diver-
gences (short-distances - high energies). In closed strings, there isno ¢ — 0
limit, for it is cut by the restriction to the fundamental region Fjy. In the open
string case, it is there. But does open string theory have UV divergences? That
would make it as bad as field (particle) theory. To answer this, concentrate on
X*, u=0,1,..,D — 1. The partition function (easily deduced from the torus)
is

Z(t) = Tr 2tk — v (Var2art) T

c.f. on torus:

) - D
Z(t)="Tr e—2miTLo ,—2miTLo _ 1/ (M) |77(it)|_2(D_2)
where

’I](Zt) _ e—Trt/12 H (1 _ e—27rmt).
m=1
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Let D = 26. In the ¢ — oo limit, we may expand

(U(it))_24 — 27 H (1 _ e—271'mt)—24 — eQﬂ't(l + 2427t + )
m=1

= 2424+ ..

Each term in the expansion comes from a certain mass level. The first term
is from the tachyon, and diverges, because m? < 0. The second term is from
the massless modes (24 transverse photons). Again, it diverges, but only log-
arithmically. This is expected and is similar to field theory. These divergences
cancel in physical quantities.

Now look at ¢t — 0. This appears to be a high energy effect, but it is not! The
cylinder becomes very thin and it looks like a closed string is being created,
propogating and disappearing again (NB: ¢ does not represent a physical dis-
tance). Sot — 0 is still an IR effect (long-distance). To show this, use the
modular property, n(—1/7) = \irn(r). For 7 = it, we get n(i/t) = /tn(it), so

0(it) = o (t) .

Change variables to s = F. Then, apart from constants

< qt gt [i\ o is\
7~ b 13 roy—24 _ / a [t ~ / s .
/0 St n(it) A ; dsn  —

t — 0is obtained by expanding in large s,

is\ %
n(—) =e® 424+ ..
™

(same expansion as before). The first term is from the tachyon (pathological).
The second term is from the massless modes. The propagator for them is 1/%2
and since k? = —m? = 0, we have 1/0 = co. The pole is due to the propagator
for a long time (on-shell).

Let us return to type-I. In this case d = 10, so for the X*’s, we have

Zx(t) =iV (872a't) n(it) %,
Moreover, there is a subtlety: define the world-sheet parity 2 by
Q: XH(o) = XH(m— o).

In terms of modes, Qa7uQ)~! = (—1)"a# (recall X*(o) ~ > ate~"7). Ob-
viously, Q2 = 1, sp  has two eigenvalues, +-1. We need to restrict to the
+1 eigenspace for consistency of the theory. This is easily implemented: we
need to keep the states with and even number of o*,, modes. [NB: In bosonic
theory, this would give garbage, for it would exclude the photon! Here, the

),

photon is @b‘jl/2|0; k), so it has 0 (even!) o ’s
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The various partition functions are not affected by the presence of 2, but we
get an extra factor of 1/2 from the projection (1 + ). Thus

Cdtl1l
A _/O 51 332x(0Zy(t)

Zy(t) = 900(0,it)* — 901 (0, it)* — 910(0,it)* — 911(0,it)*

and the two factors of 1/2 come from €2 and the GSO projections respectively.
To study the divergences (even though Z,, = 0! - we still need to study the,
otherwise Z,;, = 0is a co — co = 0 statement; also these divergences appear
(and did not cancel) in other amplitudes) Define s = 7/¢. Then

Zx(t) = ZW /OOO ds n (i;S)_gzw (g) .

Modular properties

where

n(it) = %n(i/t% Fo0(0, i) = %1900(071'/75)-

Separate NS and R. Then in the NS-sector

oo is —12
ZNS(t) = ZW‘/O ds n (;) (7900(0, iS/’]T)4 - 1910(0, ZS/7T)4) .

To leading order, 7 (%)’12 — ¢ /2 = ¢s and
010(0,is/m)* = 28¢Y/? = 2%e®, B00(0,is/m)* =1+ ..
So

V o0
INg =t—— 1 —2sy),
NS 287r(87r20/)5 /0 ds(16 4+ o(e™%))

Notice that the tachyon has disappeared, but of course, we still have the di-
vergence from the sixteen massless modes, as expected. What can we do?
Well, the cylinder is not the only possibility. We also have the M&bius strip
and the Klein bottle.

The Mobius Strip

Same as the cylinder, but we twist before we identify the ends. In other words,
XH(w,27t) = XH(m — 0,0) = QXH(0,0)Q~ L. The partition function is very
similar to the cylinder. The only difference is the insertion of the parity op-
erator, 2. Thus Zyiobius = Tr (¢7°Q). The action of (2 is simple. If a state has
an even (odd) number of o ,’s, Q@ = +1(—1). Thus, (1 — ¢™)~! is replaced by

—n

(1 (-)"g™)~", q =2 and so

n(zt) = e—ﬂ't/12 H (1 _ e—27rmt) = e—ﬂ’t/12 H (1 _ (_)me—Zﬂ'mt)
m=1

m=1
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which can be written in terms of

190007' H ].—q - m 1/2)2.

As follows: let 7 = 2it,

1900(0, 2it) = H (1 _ qm)(H(l + e—2ﬂ't(2m—1)))2

o0

= H (1 — qm)—l |:H(1 4 e—27‘rt(2m))(1 + 6—271'25(2m—1)):|2

m=1

efmt/wﬁ {H(l _ (_)m672ﬂ'tm):| 2

SO
_71-t/12 H m —Qﬂtm) _ 1900(0’ 2it)77(2it)

replaces 7(it). zero modes are still the same, so... Recall the cylinder

1 D
87720/t> n(it)*(D—2)

The partition function for the Mobius strip is

, 1’ (o
ZX =3V (ﬁ) (’1900(07 2'Lt)77(7,t)) (D-2)/2 .
T

Next, do the ¢’s. Easier to work in the R-sector (only one contribution)

ZX:z'V(

8
Zyn=Tr QgNe = —2* [ 1/16 71/48 H 1+ (=)™g™)
m=1
which can be written in terms of Jacobi-theta functions as follows:

o0

Jo1(0,7) = H (1—g™(1—q""?)

m=1

1910(0’7_) _ 2q1/8 H _ m )2
SO -
901(0,7)010(0,7) = 2¢"/* [T (1 = ¢™ [T+ () (V™)
m=1 m
soletq = e*",
1901 (0 T)ﬂ

(0 T) — % wt/3 —ﬂt/QH 1_|_ )(\/a)m)Q

m

(0, 2it)?
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S0 .

7 __ 1901(0,7')1910(0,7‘)

R 1(0, 2it)2
AtD =10

4
_ [réll, o /J‘@ 2,/4)5 U01(0,7)V10(0,7)
R= |7 5p537xZer =1V | TG Emat) (0, 2it)?

To study the ¢ — 0 limit, switch the variable to s = 7/¢. Then

_ 8 % 1o ((01(0, 2is/m)010(0, 2is/7) 4
Zr = V(87T20/)5 /0 d ( n3(2is /)00 (2is /) )

for small s, we have

901(0,2is/m) ~ 14 ..,
01(0,2is/7) ~ 2¢"/% + ...
1900(072i8/7T) ~ 14..,
n(2is/m) ~ ¢"/* 4.
SO 4
Vo110 2% Y0110 4
n3V0o qt/® * 73000 * *

no tachyon, and sixteen massless modes contributing, as expected. c.f. for
the cylinder,

V o0
— ds(1 )
877(87r20/)5/0 s(16+..)

of opposite sign, but they do not cancel!

Zr=—ZNs =1

The Klein Bottle

Even though a bottle looks more appropriate for closed strings, and ampli-
tudes are defined in terms of closed string modes, the Klein bottle contributes
to open strings.

DEFINITION: Consider a torus with 7 = 4¢. we identify the sides ¢ = 0 and
o = 27 and obtain a cylinder, but just like with the Md&bius strip, we identify
the sides 7 = 0 and 7 = 277 by twisting them first

XH(0,0) = XH(—0,2rt) = QX" (0, 2mt)Q !
The partition function is given by

ZX = Tr Qe—2ﬂtLoe—27rtLo
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In this case, Qa#Q~! = —a* (unlike for open strings, where o — —a*) There-
fore, the diagonal elements if 2 have exactly the same a#’s as &#’s.
So the trace is effectively over the o/’s only, which explains why this is an open
string amplitude.
For the diagonal elements of 2 we have 2 = +1 (even total # of o#, &4#.) and
LO = io, SO

Zx = Tr 674“L°Q|Q:1

which is the same as open string partition function, but with ¢ instead of ¢
(or 2t instead of t)

Zx =iV (4ra't)" P2 (n(2it)) (P2

Note the first factor has a 4 rather than an 8 due to the closed string.
The partition function for the ¢)*’s is obtained similarly. The result is the same
as the open string (cylinder) again, but with ¢ — 2t¢.

m [980(2it) — 9% (2it)]

NS _
Zw _—

and Zé,VS = —Zf. Overall

Cdtll , o dt _ o ) ;
Ing = / ———ZXZIJZYS = ’LV/ §(47r2o/t) s(n(2it)) "2 [050 (2it) — 91,(2it)]
0 0

2t22

and Zrp = —Zys. The study of the t — — limit can be copied from the cylinder
with an extra 210 factor

210V e
INg = l————— ds(1
NS Z87T(87r20/)5 /0 s(16+ )

Again there is no tachyon, but alas, Z.yiinder + Zmobius + Ziein Still has a non-
vanishing divergence. What do we do? We need to introduce Chan-Paton
factors!

Chan-Paton factors were first introduced in QCD, where the string was made
of glue. They attached quarks at the ends of the string which carried indices
labeling color.

In the present setting, we will introduce them because we can. They do not
spoil Lorentz invariance, because they live at the ends of the string. They are
useful because they give us extra degrees of freedom, which are needed to
describe gauge interactions.

e.g. E&M: Kaluza-Klein added an extra index throughout the string (didn’'t
know about strings, but that is what they effectively did.) (X°, ..., X3, X4): X4
was the extra-dimension. This spoiled Lorentz invariance, but that was ok,
because we only care about Lorentz invariance in four dimensions. The ex-
tra dimension gave us a gauge group (U(1)) corresponding to a photon. More
dimensions give us more complicated gauge groups and extra degrees of free-
dom.
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With Chan-Paton factors, the gauge group does not come from extra dimen-
sions, but from extra degrees of freedom at the ends of the string (open of
course). Yet another innovation of string theory! -
So all states now carry two more indices |0) — |0,j5), so, e.g. we now have
n? tachyons or photons, if i, j = 1,2, ..., n. Thus, the photon can be the weak
boson multiplet (W*, Z°), or the gluon.

How does this effect the partition function? For the cylinder, all n? states con-
tribute equally, so Z is multiplied by n2. For the Mébius strip ,because of the
twist, < needs to be identified with j, and there are n possibilities, Zyiobins —
nZMobius~

For the Klein bottle, we have no indices, because we have closed strings, so
ZKlein - ZKlein-

Overall, the partition function is now

2
Z=n chlinder + nZMobius + ZKlein'

Recall for the R-sector

. \%4 o
Zcylinder = —ZW /0 dS(lG + )
26V 0o
V4 obius = | ———— ds(16
Meb Z87T(87r20/)5/0 s(16+..)
210V 00
Z ein — — ds(16
o 2871'(87720/)5/0 516+ )

V o0
. 5\2

We obtain a finite answer if and only if » = 25 = 32. This implies that out of
all possible gauge groups, type I string theory makes a unique choice: SO(32).
This was a crucial discovery that led to the explosion of interest in string the-

ory.



