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UNIT 7

Superstrings

7.1 Bosons and fermions

Bosonic strings have the action

S =
1

2πα′

∫

d2z∂Xµ∂̄Xµ.

We wish to build a theory that has supersymmetry (SUSY). Why? It turns out
that this is the only (known) way of obtaining a consistent theory.

For SUSY, each boson (commuting field), must have a fermionic (anticom-
muting) counterpart. We have already seen anticommuting fields. We called
them b, c. Recall the b, c action

Sbc =
1

2π

∫

d2zb∂̄c.

and their OPEs are

b(z)c(0) ∼ 1

z
.

The wave equation was given by ∂̄b = ∂̄c = 0, i.e., b and c are purely holomor-
phic. The energy-momentum tensor is

T =: (∂b)c : −λ∂(: bc :)

where we assume the weights hb = λ, hc = 1 − λ. The OPE for the energy-
momentum tensor is

T (z)T (0) ∼ c

2z4
+

2

z2
T (0) +

1

z
∂T (0)

where c = −3(2λ − 1)2 + 1. Earlier we required λ = 2, so c = −26 (hence
D = 26 for the bosonic string) in order to do BRST quantization properly
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(Q2
BRST = 0). A more symmetric choice is λ = 1

2 . Then hb = hc = 1
2 and c = 1.

Define

b =
1√
2
(ψ1 + iψ2), c =

1√
2
(ψ1 − iψ2).

Then the action is

S =
1

2π

∫

d2zb∂̄c =
1

4π

∫

d2z(ψ1∂̄ψ1 + ψ2∂̄ψ2).

The stress-energy tensor written in terms if the new fields may be expressed
as

T (z) = −1

2
ψ1∂ψ1 −

1

2
ψ2∂ψ2.

The system splits into two identical copies. Since c = 1, for the two together,
each system has c = 1

2 .
Pick one such system, ψ = ψ1, say. Make D copies of it, ψ → ψµ (µ =
0, 1, ..., D− 1) and let us try ψµ as a SUSY partner of Xµ.
The stress-energ tensor is given by

T = − 1

α′ ∂X
µ∂Xµ −

1

2
ψµ∂ψµ.

The TT OPE becomes

T (z)T (0) ∼ (3D/2)

2z4
+

2

z2
T (0) +

1

z
∂T (0)

where we used

Xµ(z, z̄)Xν(0, 0) ∼ −α
′

2
ηµν ln |z|2, ψµ(z)ψν(0) ∼ 1

z
ηµν .

T (z) is a conserved current that generates conformal transformations which
are symmetries of the theory (in fact v(z)T (z) is conserved for arbitrary v(z),
leading to an infinite number of symmetries). The new theory (Xµ, ψµ) has
even more symmetries! Let us define a supercurrent as

TF = i

√

α′

2
ψµ(z)∂Xµ(z)

Any η(z)TF (z) is conserved and generates a symmetry mixingXµ and ψµ (su-
perconformal transformation) - ηmust be anticommuting so that ηTF is com-
muting. To see this consider

TF (z)Xµ(0, 0) ∼ −i
√

α′

2

α′

2

1

z
ψµ(0) = −i

√

α′

2

1

z
ψµ(0)

TF (z)ψµ(0) ∼ i

√

2

α′
1

z
∂Xµ(0, 0)
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So

δXµ = −iε
∮

dz

2πi
η(z)TF (z)Xµ(0, 0) = −

√

α′

2
εηψµ(0)

δψµ = −iε
∮

dz

2πi
η(z)TF (z)ψµ(0) = −

√

2

α′ εη∂X
µ(0, 0)

The other OPEs are given by

T (z)TF (0) ∼ 2

(

− 1

a′

)

(

i

√

α′

2

)

(

α′

2
∂2 ln |z|

)

∂Xµ(z)ψµ(0) +

(

−1

2

)

(

i

√

α′

2

)

(

∂
1

z

)

ψµ(z)∂Xµ(0)

+

(

−1

2

)

(

i

√

α′

2

)

1

z
∂ψµ(z)∂X

µ(0)

T (z)TF (0) ∼ 3

2z2
TF (0) +

1

z
∂TF (0)

TF (z)TF (0) ∼
(

i

√

α′

2

)2
1

z

(

α′

2
∂2 ln |z|

)

D +

(

i

√

α′

2

)2
1

z
∂Xµ∂Xµ

+

(

i

√

α′

2

)2
(

α′

2
∂2 ln |z|

)

ψµ(z)ψµ(0)

∼ D

z3
+

2

z
T (0).

The first OPE shows that TF has weight h = 3/2. There is a corresponding
construction for the anti-holomorphic operators. Since ψµ is holomorphic,
we need to add a new anti-holomorphic fermionic field ψ̃µ(z̄) with the action

S̃ =
1

4π

∫

d2zψ̃µ∂ψ̃µ.

The wave equation is given by

∂ψ̃µ = 0,

so, indeed ψ̃µ is anti-holomorphic. They OPE is

ψ̃µ(z̄)ψ̃ν(0) ∼ 1

z̄
ηµν .

The stress-energy tensors are

T̃ = −1

2
ψ̃µ∂̄ψ̃µ, T̃F = i

√

α′

2
ψ̃µ∂̄Xµ.

The OPEs are similar to the OPEs of their holomorphic counterparts. Notice
that the central charge for this theory is c = 3D/2. This is now a superconfor-
mal theory (N = 1, Ñ = 1 where N, Ñ counts the number of TF , T̃F ’s). Other
examples
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7.2 The ghosts

Recall,

Sbc =
1

2π

∫

d2zb∂̄c, T = (∂b)c− λ∂(bc), b(z)c(0) ∼ 1

z
.

The weights and central charge for the bc system are

hb = λ, hc = 1 − λ, cbc = −3(2λ− 1)2 + 1.

Since (b, c) are anti-commuting fields, their partners will have to be commut-
ing. We have already met them. They are the (β, γ) fields with action

Sβγ =
1

2π

∫

d2zβ∂̄γ,

which is the same action as the bc action. Let hβ = λ′, hγ = 1 − λ′. The
combined system will have SUSY if we can find a TF that mixes b, c with β, γ.
Such a TF will most likely contain a (∂β)c (c.f. (∂b)c in Tbc and (∂β)γ in Tβγ ,

Tβγ = (∂β)γ − λ′∂(βγ).

Since h = 3/2 for TF , we need 1 + λ′ + 1 − λ = 3/2, i.e., λ′ = λ − 1/2. The
central charge is

cβγ = 3(2λ′ − 1)2 − 1 = 3(2λ− 2)2 − 1.

The central charge for the combination of the two systems becomes

ctotal = cbc + cβγ = −3(2λ− 1)2 + 3(2λ′ − 2)2 = 3(3 − 4λ).

For the special (interesting) case λ = 2, in which cbc = −26 (hence d = 26 for
bosonic strings), we have ctotal = 3(3−4×2) = −15. If we combine this system
with the (Xµ, ψµ, ψ̃µ), for which c = 3D/2 and demand ctotal = 0, we need
3D/2− 15 = 0 ⇒ D = 10. Therefore superstrings must live in 10-dimensions.

Linear Dilaton

Recall

T (z) = − 1

α′ ∂X
µ∂Xµ + Vµ∂

2Xµ,

where Vµ is a fixed vector (breaking translational invariance). The central
charge for this theory is

c = D + 6α′V µVµ.

By adding the fermion ψµ, with T = − 1
2ψ

µ∂ψµ and c = D/2, we obtain

c =
3D

2
+ 6α′V µVµ,

and

TF = i

√

2

α′ψ
µ∂Xµ − i

√
2α′Vµ∂ψ

µ.
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7.3 Mode Expansions

Let us do closed strings first. Recall the expansion

∂Xµ(z) = −i
√

α′

2

∑

m

αµmz
−m−1,

where αµ0 =
√

α′

2 p
µ and [αµm, α

ν
n] = mηµνδm+n,0. Xµ obeys periodic boundary

conditions. We could have imposed anti-periodic boundary conditions on
Xµ, and we did so with U (the compactified coordinate) and got an orbifold,
but this breaks translational invariance. That is ok for dimensions we cannot
see (e.g., compactified), but not for the four dimensions that describe our
space-time. ψµ and ψ̃µ on the other hand have no such concerns (also note
the absence of a spin-statistics theorem in two-dimensions), so we have two
possibilities.

• anti-periodic boundary conditions (Neveu-Schwarz (NS)):ψµ(σ+2π) =
−ψµ(σ).

• periodic boundary conditions (Ramond (R)): ψµ(σ + 2π) = ψµ(σ).

These have two distinct Hilbert spaces (sectors). There are also two Hilbert
spaces for ψ̃µ, so in all there are four Hilbert spaces (sectors): NS-NS, R-NS,
NS-R, R-R.
Let us first describe ψµ in NS. ψµ is a function of σ + τ . When expanding
in Fourier modes, because of anti-periodicity, only the terms e−i(2m+1)(σ+τ)/2

contribute (since σ → σ+2π ⇒ e−i(2m+1)(σ+τ)/2 → e−πi(2m+1)e−i(2m+1)(σ+τ)/2)
Define r = m+ 1/2 ∈ Z + 1/2, then

ψµ(σ + τ) =
√
i
∑

r∈Z+ 1

2

ψµr e
−ir(σ+τ)

where the factor of
√
i was introduced for convenience. Transforming to the

z-picture, z = ei(σ+τ), we have

ψµ(z) =

(

∂w

∂z

)h

ψµ(σ + τ)

=
1√
iz
ψµ(σ + τ)

=
∑

r∈Z+ 1

2

ψµr z
−r− 1

2

which is a Laurent expansion. We saw the same in terms of the Xµ field. We
obtain anti-commutation relations of the ψµ fields by analyzing the OPE

ψµ(z)ψν(0) ∼ 1

z
ηµν .
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The anti-commutation relations are

{ψµr , ψνs } = ηµνδr+s,0.

We find similar results for the right-moving sector

ψ̃µ(z̄) =
∑

r∈Z+ 1

2

ψ̃µr z̄
−r−1

2 , ∂̄Xµ(z̄) = −i
√

α′

2

∑

m∈Z

α̃µmz̄
−m−1,

and the anti-commutation relations are

{ψ̃µr , ψ̃νs } = ηµνδr+s,0.

The stress-energy tensor is

T (z) =
∑

m∈Z

Lmz
−m−2, h = 2.

The OPE gives the Virasoro algebra with central extension

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m− 1)(m+ 1)δm+n,0.

In terms of the OPEs we find

TF (z)TF (0) ∼ 3

2z2
TF (0) +

1

z
∂TF (0).

We may expand TF (z) in terms of modes

TF (z) =
∑

r∈Z+ 1

2

Grz
−r− 3

2 .

Recall

[Lm, Gr] = ((h− 1)m− r)Gr+m = (
1

2
m− r)Gr+m.

Finally

TF (z)TF (z′) ∼ D

(z − z′)3
+

2

z − z′
T (z′),

3D

2
= c, so D =

2c

3
.

Find the anit-commutator {Gr, Gs} in two steps. First

Gr =

∮

dz

2πi
rr+

1

2TF (z),

and
∮

dz

2πi
zr+

1

2 TF (z)TF (z′) =

∮

dz

2πi
zr+

1

2

D

(z − z′)3
+ 2z′r+

1

2 T (z′)
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f(z) = zr+
1

2 , f ′(z) =

(

r +
1

2

)

rr−
1

2 , f ′′(z) =

(

r2 − 1

4

)

zr−
3

2 ,

so
∮

dz

2πi
zr+

1

2

D

(z − z′)3
=
D

2

(

r2 − 1

4

)

z′r−
3

2

Second step: apply
∮

dz′

2πiz
′s+ i

2 to isolateGs:

{Gr, Gs} =
D

2

(

r2 − 1

4

)∮

dz′

2πi
z′r+s−1 + 2

∮

dz′

2πi
z′r+s+1T (z′)

= 2Lr+s +
D

2

(

r2 − 1

4

)

δr+s,0

= 2Lr+s +
c

12

(

4r2 − 1
)

δr+s,0

The algebra of (Lm, Gr) closes, as expected: NS algebra. Next, let us study the
mode expansion: using

∂Xµ = −i
√

α′

2

∑

m∈Z

αµmz
−m−1, ψµ =

∑

r∈Z+ 1

2

ψµr z
−r−1

2 ,

and

T (z) = − 1

α′ ∂X
µ∂Xµ −

1

2
ψµ∂ψµ = − 1

α′ ∂X
µ∂Xµ −

1

4
(ψµ∂ψµ − (∂ψµ)ψµ)

we have

Lm =

∮

dz

2πi
zm+1T (z) =

1

2

∑

n,n′

∮

dz

2πi
αµnαn′µz

−n−n′−m−1 +
1

4

∑

r,r′

∮

dz

2πi
ψµr ψr′µ(r − r′)z−r−r

′+m−1

=
1

2

∑

n∈Z

αµm−nαnµ +
1

4

∑

r∈Z+ 1

2

(2r −m)ψµm−rψrµ.

TF (z) = i

√

2

α′ψ
µ∂Xµ ⇒ Gr =

∮

dz

2πi
zr+

1

2TF (z) =
∑

n,r′

∮

dz

2πi
αµnαr′µz

−n+r+r′−1 =
∑

n∈Z

αµnψr−n µ.

Normal ordering: No question in Gr, ∀ r and Lm, ∀m 6= 0. Potential problem
with L0. After normal ordering, we get L0 + a where a is a constant to be
determined. To determine a, look at [L+, L−1] = 2L0. We have L1|0〉 = 0, so
〈0|[L+, L−1]|0〉 = 〈0[L+1L−1]|0〉 = ||L−1|0〉||2, because L+

−1 = L1.
Now L−1|0〉 = 1

2

∑

αµ−1−nαnµ|0〉 + 1
4

∑

(2r + 1)ψµ−1−rψrµ|0〉 There are non-
vanishing terms only if −n− 1 < 0 n < 0, i.e., 0 < n < −1 which is impossible!
Also 0 < r < −1, which implies r = 1/2, but then 2r+1 = 0, so it also vanishes.
Therefore

L−1|0〉 = 0, ||L−1|0〉||2 = 0,

so
〈0|2L0|0〉 = 2a = 0 ⇒ a = 0.

In the above, we used αµn|0〉 = ψµr |0〉, n, r > 0, and the hermicity property,
(αµ−n)

† = αµn, (ψµ−r)
† = ψµr .
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The ghosts

The ghost system (b, c;β, γ) is a superconformal system on its own right. It is
opposite to (Xµ, ψµ) in that the role of Xµ is played by the fermionic (b, c).
So b, c, obey periodic boundary conditions (necessary due to definition of
QBRST). Then (β, γ) may obey periodic (R) or anti-periodic (NS) boundary
conditions. Let us do NS first. Recall

hb = λ, hc = 1 − λ, hβ = λ′, hγ = 1 − λ′, λ′ = λ− 1

2
.

We are interested in the λ = 2 case, in order to couple this system to the
(Xµ, ψµ) system. Then

hb = 2, hc = 1 − 1, hβ =
3

2
, hγ = −1

2
,

and the expansions are

b =
∑

m∈Z

bmz
−m−2, c =

∑

m∈Z

cmz
−m+1, β =

∑

r∈Z+ 1

2

βrz
−r− 3

2 , γ =
∑

r∈Z+ 1

2

γrz
−r+ 1

2 .

From the operator product expansions, we get standard (anti) commutators

{bm, cn} = δm+n,0, [γr, βs] = δr+s,0.

bm, cm, βr, γr are all annihilation operators for r,m > 0. Recall the subtlety
with the zero modes b0, c0, satisfying {b0, c0} = 1. We have two choices for the
vacuum. Choose c0|0〉 = 0. The conformal generators are

Lm =

∮

dz

2πi
zm+1T (z),

T (z) = (∂b)c− λ∂(bc) + (∂β)γ − λ′∂(βγ)

= (∂b)c− 2∂(bc) + (∂β)γ − 3

2
∂(βγ)

=
∑

n,n′

(−n′ − 2)bn′z−n
′−3cnz

−n+1 − 2(−n− n′ − 1)bn′cnz
−n−n′−2

+
∑

r,r′

(

−r′ − 3

2

)

βr′z
−r′− 5

2 γrz
−r+1

2 − 3

2
(−r − r′ − 1)βr′γrz

−r−r′−2

=
∑

n,n′

(n′ + 2n)bn′ccz
−n−n′−2 +

1

2

∑

r,r′

(3r + r′)βr′γrz
−r−r′−2

So

Lm =

∮

dz

2πi
zm+1T (z) =

∑

n

(m+ n)bm−ncn +
1

2

∑

r

(m+ 2r)βm−rγr
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The SUSY generators are

Gr =

∮

dz

2πi
zr+

1

2TF (z), TF (z) = −1

2
(∂β)c+ λ′∂(βc) − 2bγ

where

TF (z) =
∑

s,n

−1

2

(

−s− 3

2

)

βsz
−s− 5

2 cnz
−n+1 +

3

2

(

−s− n− 1

2

)

βscnz
−s−n− 3

2 − 2bnγsz
−n−s− 3

2

=
∑

s,n

−1

2
(2s+ 3n)βscnz

−n−s− 3

2 − 3bnγsz
−n−s− 3

2 .

So

Gr =

∮

dz

2πi
zr+

1

2TF (z) = −
∑

n

1

2
(2r + n)βr−ncn + 2bnγr−n.

Normal ordering: again, only L0 has a problem; should be L0 + a. To find a,
consider [L1, L−1] = 2L0.

L−1 =
∑

n

(n− 1)b−1−ncn +
1

2

∑

r

(2r − 1)β−1−rγr.

When applied to the ground state, |0〉, only the terms n = −1, r = −1/2
contribute (recall c0|0〉 = 0), soL−1|0〉 = −2b0c−1|0〉−β−1/2γ−1/2|0〉. Similarly,
we obtain 〈0|c−1 = 〈0|(2b1c0 + β1/2γ1/2). So

〈0|[L1, L−1]|0〉 = 〈0|L1L−1|0〉 = −2〈0|(b1c0b0c−1−β 1

2

γ 1

2

β− 1

2

γ− 1

2

|0〉 = −2+1 = −1.

So 2a = 〈0|2L0|0〉 = −1, so a = −1/2 (−1 from the bc and 1/2 from the βγ).

7.4 Open Strings

Open strings do not have independent ocsillators αµn, α̃
µ
n. Instead, αµn = α̃µn.

Thus,

∂Xµ(z) = −i
√

α′

2

∑

m

αµmz
−m−1, ∂̄Xµ(z̄) = −i

√

α′

2

∑

m

αµmz̄
−m−1.

where αµ0 =
√

2α′pµ (c.f. αµ0 =
√

α′

2 p
µ for closed strings). Similarly for the

ψµ’s:

ψµ(z) =
∑

r

ψµr z
−r−1

2 , ψ̃µ(z̄) =
∑

r

ψµr z̄
−r− 1

2 .
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The spectrum

For a physical state, |ψ〉, we demand

Ln|ψ〉 = Gr|ψ〉 = 0, for r, n > 0.

Also, L−n|ψ〉, Gr|ψ〉 are orthogonal to all physical states |ψ′〉 : 〈ψ′|L−n|ψ〉 =
〈ψ|Ln|ψ′〉 = 0, and similarly for Gr|ψ〉. They are in the equivalence class of
zero. Check also L−n|ψ〉 is null: ||L−n|ψ〉||2 = 0. Physical states also obey the
constraint

(

L0 −
1

2

)

|ψ〉 = 0

i.e., the Hamiltonian H = L0 − 1/2 = 0 (vanishes).
We build the Hilbert space by applying αµ−n, ψ

µ
−r oscillators only (no ghost

modes- the lead to states in the same equivalence classes as above) to the
ground state.

H =
1

2

∑

n∈Z

: αµ−nαnµ : +
1

2

∑

r

r : ψµ−rψrµ : −1

2

plus the ghost oscillators, but they do not contribute. Since α0 =
√

2α′pµ for
open strings, we have

H = α′p2 +N − 1

2
, N =

∞
∑

n=1

αµ−nαnµ +

∞
∑

r= 1

2

rψµ−rψ
rµ.

The lowest state: |0; k〉 for which N = 0, so α′k2 − 1/2 = 0, so m2 = −k2 =
−1/2α′, a tachyon!
So we still have a tachyon. This was to be expected, because we took the
bosonic theory and enlarged it therefore we should expect the new SUSY the-
ory to contain all the states of the bosonic theory and more.
The next state: |1〉

Aµ(k)ψ
µ

− 1

2

|0; k〉

has N = 1
2 . We see that this is a massless state since

α′k2 +
1

2
− 1

2
= 0, ⇒ m2 = −k2 = 0.

Also, Gr =
∑

n α
µ
nψr−nµ, so when G1/2 acts on our state, only the n = 0 term

contributes. So

G 1

2

|1〉 = αµ0Aµ(k)|0; k〉 =
√

2α′k ·A|0; k〉 = 0, ⇒ k · A = 0,

i.e., transverse polarization. Also note that this is a null state:

G− 1

2

|0; k〉 = αµ0ψ− 1

2
µ|0; k〉 =

√
2α′k · ψ− 1

2

|0; k〉
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i.e., the state with longitudinal polarization is null (and orthogonal to all phys-
ical states).
Thus the massless state is aD−2 = 8 dimensional vector. It transforms under
the group SO(8). For closed strings, the situation is similar.
TheH = 0 constraint translates into L0 = L̃0 = 0, i.e.,

α′

4
p2 +N − 1

2
=
α′

4
p2 + Ñ − 1

2
= 0

Notice the difference in α′p2 → α′

4 p
2, which is due to the different definitions

of αµ0 between closed and open string.

The lowest state: |0; k〉 with α′

4 k
2 = 1

2 , som2 = −k2 = − 2
α′

which is a tachyon!

The next level: Aµνψ
µ
−1/2ψ

ν
−1/2|0; k〉, with α′

4 k
2 = 0, i.e., m2 = 0. This de-

omposes into a scalar, an antisymmetric tensor, and a traceless symmetric
tensor:

Aµν =
1

D − 2
Aρρηµν +

1

2
(Aµν −Aνµ) +

1

2
(Aµν + Aνµ +

2

D − 2
Aρρηµν .

SectionGetting rid of the tachyon Comparing the tachyon with the massless
states, there is a clear difference: the tachyon has one less fermionic excita-
tion then the massless states. If we select the states with as odd number of
fermionic excitations, that will get rid of the tachyon. This is similar to the
harmonic oscillator, where we could select, e.g., all the odd states and still
have a perfectly well defined physical system.
The operator that did the trick there was P (parity) which commuted with
the Hamiltonian and could therefore be simultaneously diagonalized with it.
Here we need to find an operator that has two eigenvalues and commutes
with all generators of space-time symmetries (not just the Hamiltonian). The
space-time symmetries from the Lorentz group (Poincare group rather, but

Lorentz suffices). Let us review briefly. The angular momentum ~L = ~r × ~p. In
terms of components we have

Lx = ypz − zpy, Ly = zpx − xpz , Lz = xpy − ypx.

where x and p obey the commutation relations [xi, pj ] = δij .

Define the antisymmetric tensorLij = xipj−xjpi, thenLi = 1
2εijkLjk . An an-

tisymmetric tensor is a vector in three-dimensions. Not so in four-dimensions.
So generalize Lij → Lµν = xµpν − xνpµ, [xµ, pν ] = iηµν which includes time.
~L generates rotations:

δxi = − i

2
ωkl[Lkl, xi] = ωijxj

where ωij is an anti-symmetric tensor. In terms of the vector ~ω we have δ~x =
~ω × ~x. This generalizes to Lµν : δxµ = ωµνx

ν . For e.g., L01, we have δt =
ω01x, δx = −ω01t, a boost! L0i is a boost in the xi-direction. The algebra of
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these Lorentz generators is

[Lµν , Lρσ] = [xµpν − xνpµ, xρpσ − xσpρ]

= i(ηνρLµσ − ηµρLνσ − ηνσLµρ + ηµσLνρ)

Lie algebra of SO(3, 1), or in D-dimensions, SO(D − 1, 1). Introduce spinors:
we need to add a piece to Lµν that will rotate the spinor (or boost it). Call
this piece Σµν . It needs to satisfy the same SO(D − 1, 1) algebra and will
commute with Lµν by constuction (since Lµν involves space-time and Σµν
involves fermionic operators).
Guess:

Σµν = −i
∑

r

ψµr ψ
ν
−r = − i

2

∑

r

[ψµr , ψ
ν
−r].

Then the algebra is

[Σµν ,Σρσ ] = −1

4

(

∑

r

[ψµr , ψ
ν
−r],

∑

s

[ψρs , ψ
σ
−s]

)

= −
(

∑

r

ψµr ψ
ν
−r,
∑

s

ψρs , ψ
σ
−s

)

= i(ηνρΣµσ − ηµρΣνσ − ηνσΣµρ + ηµσΣνρ)

where we used {ψµr , ψνs } = ηµνδr+s,0.
Σµν generates Lorentz transformations on the fermionic fields ψµ(z). No-
tice that in D = 10, there are five operators that commute with each other:
Σ01, Σ23, Σ45, Σ67, Σ89 (trivial - they contain different ψµr modes). They can
be simultaneously diagonalized. How do they act? Let us be specific and con-
sider Σ23. It acts on ψ2

r , ψ
3
r as follows:

[

Σ23, ψ2
r

]

= −i
∑

s

[ψ2
sψ

3
−s, ψ

2
r ] = −

∑

s

{ψ2
s , ψ

2
r}ψ3

−s = iψ3
r

[

Σ23, ψ3
r

]

= −[Σ32, ψ3
r ] = −iψ2

r

Eigenstates: ψ2
r + iψ3

r , ψ
2
r − iψ3

r .

[

Σ23, ψ2
r + iψ3

r

]

= ψ2
r + iψ3

r eigenvalue : +1
[

Σ23, ψ3
r − iψ3

r

]

= −ψ2
r + iψ3

r eigenvalue : −1

Consider a finite transformation (rotation) U(θ) = eiθΣ
23

. Then U(θ)(ψ2
r +

iψ3
r)U

†(θ) = eiθ(ψ2
r + iψ3

r).
Proof:

Σ23(ψ2
r + iψ3

r) = (ψ2
r + iψ3

r)(1+Σ23) ⇒ (Σ23)n(ψ2
r + iψ3

r = (ψ2
r + iψ3

r)(1+Σ23)n

⇒ U(θ)(ψ2
r + iψ3

r)U
†(θ) = (ψ2

r + iψ3
r)e

iθ(1+Σ23) = eiθ(ψ2
r + iψ3

r)U(θ).
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Similarly, U(θ)(ψ2
r + iψ3

r)U
†(θ) = e−iθ(ψ2

r + iψ3
r). In particular, for θ = π,

the action of U(π) on both ψ2
r ± iψ3

r is the same. Therefore U(π)ψ2,3
r U †(π) =

eiπψ2,3
r = −ψ2,3

r , i.e., U(π) and ψ2,3
r anti-commute!

On the other handU(π) commutes with all otherψµr , µ 6= 2, 3. ThusU(π) only
has two eigenvalues, ±1, like parity! If a state has an even number of ψ2

−r, 3’s

(r > 0), then it belongs to eigenvalue +1 - with an odd number of ψ2,3
−r ’s, it has

U(π) = −1. E.g.:

ψ2
−r|0〉 : U(π)ψ2

−r |0〉 = −ψ2
−rU(π)|0〉 = −ψ2

−r|0〉 : (−1)

U(π)ψ2
−r1ψ

3
−r2 |0〉 = −ψ2

−r1U(π)ψ3
−r2 |0〉 = ψ2

−r1ψ
3
−r3 |0〉 (+1)

etc.
We can do the same with all other Σ’s. Thus we have

U1(π) = eπΣ12

, U2(π) = eiπΣ23

, U3(π) = eiπΣ45

, U4(π) = eiπΣ67

, U5(π) = eiπΣ89

.

Notice that U1(π) has no i in the exponential. This is because {ψ0
r , ψ

0
s} =

−δr+s,0. The product

U1(π)U2(π)...U5(π) = eiπ(−iΣ01+Σ23+Σ45+Σ67+Σ89) = eiπF .

This anti-commutes with allψµr . F is a fermion number operator. eiF will play
the role of parity in the harmonic oscillator case. Correction: eiπFVgh will. Vgh

is the ghost contribution. Since there are no ghost oscillators, all it does is act
on the vacuum: Vgh|0〉 = −|0〉. Thus restrict Hilbert space to eigenstates of
eiπFVgh of eigenvalue +1 (invariant states). This gets rid of the tachyon, for
eiπFVgh|0; k〉 = −|0; k〉 but keeps all massless states ψµ−1/2|0; k〉.

Consistent truncation

Since eiπF is made of Lorentz generators it is guaranteed to be conserved by
the OPEs of vertex operators. So even states will produce even states when
they interact with other even states.
Thus, we now have a consistent string theory without a tachyon! Or do we?
We still need to check modular invariance. TheXµ part of the partition func-
tion is modular invariant by itself,

ZX(τ) =

(

1

2π
√
α′τ2

|η(q)|−2

)D

, η(q) = q1/24
∞
∏

n=1

(1 − qn), q = e2πiτ .

the fermionic part of the partition function is similarly calculated. The result
is a Jacobi-theta function. But, alas, it is not modular invariant. This can be
seen without doing any calculation as follows.
Before we demanded ψµ(σ + 2π) = −ψµ(σ) (anti-periodic boundary condi-
tions). On a torus, we demand ψµ(z + 2π) = −ψµ(z) and also ψµ(z + 2πτ) =
−ψµ(z). But then,

ψµ(z + 2π(τ + 1)) = −ψµ(z + 2πτ) = +ψµ(z).
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Therefore the transformation τ → τ + 1 changes the boundary conditions
to periodic! Therefore τ → τ + 1 is not a symmetry of the theory. Our the-
ory is not modular invariant. The above argument also shows how to fix the
theory. We need to include (somehow) the sector in which ψµ obeys periodic
boundary conditions. That is the Ramond sector and we study it next.

7.5 The Ramond (R) sector

The R-sector can only exist in two-dimensions, because there is no spin-statistics
theorem there. The mode expansion is

ψµ(z) =
∑

n∈Z

ψµnz
−n− 1

2

indices are integers, since ψµ(z) is periodic. The expansion has a factor of
z−1/2, because the weight of ψµ is h = 1/2. Therefore this is not a Laurent
expansion and has a branch cut. We still have

{ψµm, ψνn} = ηµνδm+n,0

as in the NS-sector. We also have the same algebra for Lm, Gr (note it is now
Gm, m ∈ Z).

Normal ordering

We only have a problem with L0. Using [L1, L−1] = 2L0, we have

2〈0|L0|0〉 = 〈0|L+1L−1|0〉,

L−1|0〉 =

(

1

2

∑

n

αµ−1−nαnµ +
1

4

∑

n

(2n+ 1)ψµ−1−nψnµ

)

|0〉

For the α’s we need −1 − n, n < 0, so −1 < n < 0, which is impossible. For
the ψ’s, we need −1− n, n ≤ 0, so −1 ≤ n ≤ 0, so n = 0, or n = −1. Therefore

L−1|0〉 =
1

4

(

−ψµ0ψ−1µ + ψµ−1ψ0µ

)

|0〉 =
1

2
ψµ−1ψ0µ|0〉.

Therefore

〈0|L1L−1|0〉 =
1

4
〈0|ψ0νψ

ν
1ψ

µ
−1ψ0µ|0〉,

=
1

4
〈0|ψµ0ψ0µ|0〉

=
1

8
〈0|{ψµ0 , ψ0µ}|0〉

=
D

8

Therefore 〈0|L0|0〉 = D/16 = a (i.e., L0 =: L0 : −D/16).
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The ghosts

b =
∑

m∈Z

bmz
−m−2, c =

∑

m∈Z

cmz
−m+1, β =

∑

r∈Z+ 1

2

βrz
−r−3

2 , γ =
∑

r∈Z+ 1

2

γrz
−r+ 1

2 .

where β, γ are not Laurent expansions. The algebras are

{bm, cn} = δm+n,0, [γm, βn] = δm+n,0,

which are the same as before, but in addition, the zero modes: [γ0, β0] = 1,
i.e., γ0, β0 are creation and annihilation operators respectively. This define
|0〉 by bm|0〉 = 0, m > 0, βm|0〉 = 0, m ≥ 0 and cm|0〉 == gm|0〉 = 0 for
m > 0.

Normal ordering

L0 again has a problem. We can solve as we did before.

L−1|0〉 =

(

∑

n

(n− 1)b−1n−1cn +
1

2

∑

n

(2n− 1)β−n−1γn

)

|0〉

=

(

−b−1c0 −
1

2
β−1γ0

)

|0〉

There is only one possibility since −1 < n ≤ 0, so

〈0|L1L−1|0〉 = −〈0|b0c1b−1c0|0〉 −
1

4
〈0|β0γ1β−1γ0|0〉

= −1− 1

4
= −5

4

and

〈0|L0|0〉 =
1

2
〈0|L1L−1|0〉 = −5

8
= a.

The spectrum

First observe that the defintion |0〉 is ambiguous. Indeed |0〉 is defined by
ψµm|0〉, m > 0. But then ψµ0 |0〉 is as good as |0〉, for ψνmψ

ν
0 |0〉 = −ψν0ψµm|0〉 =

0, m > 0. the ground state is then a representation of the algebra of the zero
modes, {ψµ0 , ψν0} = ηµν (Clifford - Dirac algebra). |0〉 therefore is a spinor.
Instead of one spin, here we have five, because we are in ten-dimensions.
The spin operators are Σ01,Σ23,Σ45,Σ67,Σ89. They commute with each other
so they can be simultaneously diagonalized. We can then define a basis of
ground states |s1, s2, s3, s4, s5〉 where si = ±1/2(i = 1, 2, 3, 4, 5). We will use
the notation ~s = (s1, s2, s3, s4, s5). There are 25 = 32 such states (c.f. 22 = 4
states in the four-dimensional Dirac spinor). All states built from |~s〉 have
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integer +1/2 spin, because ψµ−m has spin one (eigenstate of SXXXX+1 with
eigenvalue +1). to be contrasted with NS-sector where all states have integer
spin. Thus, the inclusion of the R-sector is important, because we need all
spins to describe Nature.

The Hamiltonian (L0) has const. D/16 − 5/8 = 10/16 − 5/8 = 0, so H =
α′p2 +N (c.f. H = α′p2 +N − 1/2 in the NS-sector)

The lowest level: N = 0, soH = 0 andm2 = −p2 = 0. There is no tachyon! The
lowest states, |0; k〉 are massless! Non-trivial constraint: G0|~s; k〉 = 0. Relevant
piece: G0 =

√
2α′pµψ

µ
0 , so kµψ

µ
0 |~s; k〉 = 0 which is the Dirac equation (γµ =

1√
2
ψµ0 , then kµψ

µ|~s; k〉 = 0). Notice also that the algebra {G0, G0} = 2L0, i.e.,

G2
0 = L0. G0 is the square root of the Hamiltonian!

This is just like in the Dirac case. It is also a generic feature of a SUSY theory:
the Hamiltonian can be written as the square of a SUSY charge.

Notice that this also implies that the ground state has zero eigenvalue, be-
cause G0|0〉 = 0, which makes it very hard to have a finite cosmological con-
stant in a SUSY theory. In terms of the fields, the contribution of the boson
always exactly cancels the contribution of the fermions (due to SUSY boson
↔ fermion) and we get zero vacuum expectation energy (cosmological con-
stant). The R-sector can also be split into two eigenspaces of eiπF with eigen-
values ±1. The ground states belongs to +1.

7.6 Superstring Theories

We may now combine the NS and R-sectors to form a consistent superstring
theory. We need to have analycity in the OPEs (which is not guaranteed in
the R-sector, due to branch cuts in the expansions of the fields). This severely
constrains the possibilities (we also do not want a tachyon) to ...

IIA : (NS+, NS+) (R+, NS+) (NS+, R−) (R+, R−)
IIB : (NS+, NS+) (R+, NS+) (NS+, R+) (R+, R+)
IIA′ : (NS+, NS+) (R−, NS+) (NS+, R+) (R−, R+)
IIB′ : (NS+, NS+) (R−, NS+) (NS+, R−) (R−, R−)

It can be shown that IIA′ is the same as IIA (also, similarly, IIB′ is the same
as IIB)

Proof: Transform X9 → −X9, ψ9 → −ψ9, ψ̃9 → −ψ̃9. Then eiπS
89 → e−iπS

89

(same eigenvalue), but S89|0〉 → −S89|0〉, so the sign is reversed in the R-
sector (S89 annihilates the NS vacuum (no zero modes), so no change there).
Therefore this transformation maps R+ → R− and vice versa. QED

Open Strings

Only one possibilty: type I: NS+,R+. The projection of eigenspaces of eiπF and

eiπF̃ is known as the Gliozzi-Scherk-Olive (GSO) projection.
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The resulting theories turn out to have space-time SUSY and obey the spin-
statisics theorem (which has to be obeyed for D > 2). The fact that space-
time SUSY and the spin-statistics theorem emerge is rather unexpected. One
would expect that these two should be evident from the start - built in formal-
ism. This fact remains elusive.

Modular Invariance

We have already seen that modular invariance for the NS-NS sector alone
cannot possibly work. Now we have a multitude of sectors and a hope that
modular transformations will map one onto others and somehow the combi-
nation will be invariant. Let us start with the NS-sector. Only the NS+ subsec-
tor appears. The partition function for the Xµ’s is the same as before and we
have already established it is modular invariance, so we will concentrate on
the ψµ’s.

The partition function is as always

ZNS+ = Tr (qH ), q = e2πiτ .

If |ψ〉 is in NS+, then eiπF |ψ〉 = |ψ〉. To find such a |ψ〉, we can start with an
arbitrary state |ψ′〉 and project onto the eigenspace of eπiF of eigenvalue +1.
The projection operator is

P =
1

2
(1 + eiπF ), P 2 = P.

Also, eiπFP |ψ′〉 = P |ψ′〉, so eigenvalue +1. Thus, to compute the Tr NS(PA) =
1
2Tr NSA+ 1

2Tr NS(eiπFA). First trace: for each µ, we have the creation oper-
ators ψµ−r, r > 0 where of course r ∈ Z + 1

2 . A state can have 0 or 1 ψµ−r, since
(ψµ−r)

2 = 0 (fermionic mode). So for fixed r, µ we get a factor q0 + qr = 1 + qr

(since N = 0, r) the rest of H has already been considered in theXµ part).

Varying r, we get a product

∏

r>0

(1 + qr) =

∞
∏

m=1

(1 + qm−1/2).

Varying µ, we get eight copies of this product (because only the transverse µ’s
contribute and there are 10− 2 = 8 of them). Thus

Tr NSq
H =

(

q−1/48
∞
∏

m=1

(1 − qm− 1

2 )

)8

.

NB the factor of q−1/48 which comes from the new tensor transformation of
T (stress-energy “tensor”) as we go from z to σ + τ (z = ei(σ+τ)) c.f. in the
bosonic case we got q−1/24, double becuase for a boson c = 1 whereas for a



42 UNIT 7: Superstrings

fermion c = 1/2. We can write this partiion function in terms of the Jacobi
ϑ-function. Recall ... (z = e2πiν , q = e2πiτ )

ϑ00(ν, τ) =

∞
∏

m=1

(1 − qm)(1 + zqm−1/2)(1 + z−1qm−1/2)

ϑ01(ν, τ) =
∞
∏

m=1

(1 − qm)(1 − zqm−1/2)(1 − z−1qm−1/2)

ϑ10(ν, τ) = 2eπiτ/4 cosπν
∏

m=1

(1 − qm)(1 + zqm)(1 + z−1qm)

ϑ11(ν, τ) = −2eπiτ/4 sinπν
∏

m=1

(1 − qm)(1 − zqm)(1 − z−1qm)

For ν = 0, z = 1, so

ϑ00(ν, τ) =

∞
∏

m=1

(1 − qm)(1 + qm−1/2)(1 + qm−1/2)

ϑ01(ν, τ) =

∞
∏

m=1

(1 − qm)(1 − qm−1/2)(1 − qm−1/2)

ϑ10(ν, τ) = 2q1/8
∏

m=1

(1 − qm)(1 + qm)(1 + qm)

ϑ11(ν, τ) = −2q1/8 sinπ0
∏

m=1

(1 − qm)(1 − qm)(1 − qm) = 0!

Also η(τ) = q1/24
∏∞
m=1(1 − qm). Thus,

ϑ00(0, τ) = q−1/24η(τ)

( ∞
∏

m=1

(1 + qm−1/2)

)2

.

So

Tr NSq
H =

(

ϑ00(0, τ)

η(τ)

)

.

Next, let us do Tr NSe
πiF qH . Let us fix µ and r again. If the state has zero

ψµ−r’s then F = 0 and N = 0. So we get q0 = 1. If the state has one ψµ−r, then
eiπF = −1 (recall eiπFψµ−re

−πiF = −ψµ−r) and N = r, so we get −qr.
So this case differs from the previous one by a mere sign change which implies
thatϑ00 → ϑ01. Moreover, the ground state |0〉has eigenvalue−1 (eiπF |0〉NS =
−|0〉NS), so we get an overall “-” sign. Thus

Tr NSe
iπF qH = −

(

ϑ01(0, τ)

η(τ)

)4

.

Similarly, in the Ramond sector,

ZR+ = Tr R+Pq
H =

1

2

(

Tr Rq
H + Tr Re

πiF qH
)

.
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The creation modes are ψµ−m ,m > 0 and we need to take special care of the
zero modes ψµ0 .
Fix µ andm > 0. Then, for zeroψµ−m’s, we obtain q0 = 1 and for one ψm−mu, we
obtain qm, so overall, 1 + qm. The ground state has energy H = 1/16 (normal
ordering constant we obtained earlier, so 1 + qm → q1/16(1 + qm). Varying
µ, m we obtain the product

Tr Rq
H =

(

q
1

16 q−
1

48

∞
∏

m=1

(1 + qm)

)8

× “0”

where “0” is the contribution of the zero-modes. Recall the ground state |~s〉.
Consider the Σ23 spin, for example. There are two states | ↑〉, | ↓〉, with spin
± 1

2 respectively. Each contributes 1, so overall 1 + 1 = 2. we have four inde-
pendent such states (since we have eight transverse dimensions Σ01 does not
produce independent physical states). Therefore the overall factor “0” = 24

c.f. with

ϑ01(0, τ) = 2q1/8
∞
∏

m=1

(1 − qm)(1 + qm)2 = 2q1/8q−1/24η(τ)

( ∞
∏

m=1

(1 + qm)

)2

Tr Rq
H =



2q1/8q−1/24

( ∞
∏

m=1

(1 + qm)

)2




4

= −
(

ϑ10(0, τ)

η(τ)

)4

where the minus sign comes from space-time spin-statistics (ghosts). Finally,
Tr Re

iπF qH gives a similar product, but with two changes

• 1 + qm → 1 − qm (- form eiπF , as in NS-sector

• | ↑〉 and | ↓〉 have opposite eigenvalues, contributing 1 − 1 = 0!

Therefore

Tr R = qH = −
(

ϑ10(0, τ)

η(τ)

)4

= 0.

Putting everything together, the partition function for ψµ in NS+ and R+ sec-
tor is

Zψ(τ) = Tr NS+q
H + Tr R+q

H

=
1

2
Tr NSq

H + Tr NS
1

2
eπiF qH +

1

2
Tr Rq

H +
1

2
Tr Re

πiF qH

=
1

2(η(τ)4
(

ϑ00(0, τ)
4 − ϑ01(0, τ)

4 − ϑ10(0, τ)
4 + ϑ11(0, τ)

4
)

.

This is complicated combination of Jacobi-theta functions, yet not only is it
modular invariant, but it vanishes identically! This should not be too surpris-
ing, since we have space-time SUSY and so the cosmological constant should
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vanish. This fact was known to Jacobi himself, for he proved the “abstruse
identity”

ϑ00(0, τ)
4 − ϑ01(0, τ)

4 − ϑ10(0, τ)
4 = 0,

and we have already seen ϑ11(0, τ)
4 = 0.

Of course the total Z is a product of Zψ and Z→ = Z∗
ψ in the case of IIB and

(Z ′
ψ)∗ =

1

2η(τ)4
(

ϑ00(0, τ)
4 − ϑ01(0, τ)

4 − ϑ10(0, τ)
4 − ϑ11(0, τ)

4
)

which of course Z ′
ψ = Zψ.

Modular invariance of type-I

Type-I is an open string theory. Instead of a torus, we have a cylinder.
The cylinder can easily be deduced from the torus. Recall for the torus

Z =

∫

F0

dτdτ̄

4τ2
Z(τ), Z(τ) = Tr qH , q = e2πiτ

where F0 is the fundamental region and dτdτ̄
4τ2

is a modular invariant mea-

sure on the torus (τ2(2π)2 is the volume of the torus = volume of the group
of translations). The cylinder defines a more honest partition function, be-
cause τ → t ∈ R and Z(t) = Tr qH , q = e−2πt, i.e., τ = iτ2, τ2 = t, and

Z =

∫ ∞

0

dt

2t
Tr e−2πtL0 .

Notice that thee is no fundamental region, so we have potential divergences
from both limits t → ∞ and t → 0. t → ∞ is usually associated with the
IR region (long-distance, low energy). t → 0 is associated with UV diver-
gences (short-distances - high energies). In closed strings, there is no t → 0
limit, for it is cut by the restriction to the fundamental region F0. In the open
string case, it is there. But does open string theory have UV divergences? That
would make it as bad as field (particle) theory. To answer this, concentrate on
Xµ, µ = 0, 1, .., D − 1. The partition function (easily deduced from the torus)
is

Z(t) = Tr e−2πtL0 = iV
(√

8π2α′t
)−D

(η(it))
−(D−2)

c.f. on torus:

Z(t) = Tr e−2πiτL0e−2πiτ̄L̃0 = iV
(

√

4π2α′τ2

)−D
|η(it)|−2(D−2)

where

η(it) = e−πt/12
∞
∏

m=1

(1 − e−2πmt).
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LetD = 26. In the t→ ∞ limit, we may expand

(η(it))−24 = e2πt
∞
∏

m=1

(1 − e−2πmt)−24 = e2πt(1 + 24e−2πt + ...)

= e2πt + 24 + ...

Each term in the expansion comes from a certain mass level. The first term
is from the tachyon, and diverges, because m2 < 0. The second term is from
the massless modes (24 transverse photons). Again, it diverges, but only log-
arithmically. This is expected and is similar to field theory. These divergences
cancel in physical quantities.
Now look at t → 0. This appears to be a high energy effect, but it is not! The
cylinder becomes very thin and it looks like a closed string is being created,
propogating and disappearing again (NB: t does not represent a physical dis-
tance). So t → 0 is still an IR effect (long-distance). To show this, use the
modular property, η(−1/τ) =

√
iτη(τ). For τ = it, we get η(i/t) =

√
tη(it), so

η(it) =
1√
t
η

(

i

t

)

.

Change variables to s = π
t . Then, apart from constants

Z ∼
∫ ∞

0

dt

t
t−13η(it)−24 =

∫ ∞

0

dt

t2
η

(

i

t

)−24

∼
∫ ∞

0

dsη

(

is

π

)−24

.

t→ 0 is obtained by expanding in large s,

η

(

is

π

)−24

= e2s + 24 + ...

(same expansion as before). The first term is from the tachyon (pathological).
The second term is from the massless modes. The propagator for them is 1/k2

and since k2 = −m2 = 0, we have 1/0 = ∞. The pole is due to the propagator
for a long time (on-shell).
Let us return to type-I. In this case d = 10, so for theXµ’s, we have

ZX(t) = iV (8π2α′t)−5η(it)−8.

Moreover, there is a subtlety: define the world-sheet parity Ω by

Ω : Xµ(σ) → Xµ(π − σ).

In terms of modes, Ωαmn uΩ
−1 = (−1)nαµn (recall Xµ(σ) ∼ ∑

αµne
−inσ). Ob-

viously, Ω2 = 1, sp Ω has two eigenvalues, ±1. We need to restrict to the
+1 eigenspace for consistency of the theory. This is easily implemented: we
need to keep the states with and even number of αµ−n modes. [NB: In bosonic
theory, this would give garbage, for it would exclude the photon! Here, the
photon is ψµ−1/2|0; k〉, so it has 0 (even!) αµ−n’s.
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The various partition functions are not affected by the presence of Ω, but we
get an extra factor of 1/2 from the projection 1

2 (1 + Ω). Thus

Z =

∫ ∞

0

dt

2t

1

2

1

2
ZX(t)Zψ(t)

where
Zψ(t) = ϑ00(0, it)

4 − ϑ01(0, it)
4 − ϑ10(0, it)

4 − ϑ11(0, it)
4

and the two factors of 1/2 come from Ω and the GSO projections respectively.
To study the divergences (even though Zψ = 0! - we still need to study the,
otherwise Zψ = 0 is a ∞ − ∞ = 0 statement; also these divergences appear
(and did not cancel) in other amplitudes) Define s = π/t. Then

ZX(t) = i
V

8π(8π2α′)5

∫ ∞

0

ds η

(

is

π

)−8

Zψ

(π

s

)

.

Modular properties

η(it) =
1√
t
η(i/t), ϑ00(0, it) =

1√
t
ϑ00(0, i/t).

Separate NS and R. Then in the NS-sector

ZNS(t) = i
V

8π(8π2α′)5

∫ ∞

0

ds η

(

is

π

)−12
(

ϑ00(0, is/π)4 − ϑ10(0, is/π)4
)

.

To leading order, η
(

is
π

)−12
= q−1/2 = es and

ϑ10(0, is/π)4 = 24q1/2 = 24es, ϑ00(0, is/π)4 = 1 + ...

So

ZNS = i
V

8π(8π2α′)5

∫ ∞

0

ds(16 + o(e−2s)).

Notice that the tachyon has disappeared, but of course, we still have the di-
vergence from the sixteen massless modes, as expected. What can we do?
Well, the cylinder is not the only possibility. We also have the Möbius strip
and the Klein bottle.

The Möbius Strip

Same as the cylinder, but we twist before we identify the ends. In other words,
Xµ(ω, 2πt) = Xµ(π − σ, 0) = ΩXµ(σ, 0)Ω−1. The partition function is very
similar to the cylinder. The only difference is the insertion of the parity op-
erator, Ω. Thus ZMobius = Tr (qL0Ω). The action of Ω is simple. If a state has
an even (odd) number of αµ−n’s, Ω = +1(−1). Thus, (1 − qm)−1 is replaced by
(1 − (−)mqm)−1, q = e=2πt and so

η(it) = e−πt/12
∞
∏

m=1

(1 − e−2πmt) ⇒ e−πt/12
∞
∏

m=1

(1 − (−)me−2πmt)
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which can be written in terms of

ϑ00(0, τ) =

∞
∏

m=1

(1 − qm)(1 − qm−1/2)2.

As follows: let τ = 2it,

ϑ00(0, 2it) =

∞
∏

m=1

(1 − qm)(
∏

(1 + e−2πt(2m−1)))2

=

∞
∏

m=1

(1 − qm)−1
[

∏

(1 + e−2πt(2m))(1 + e−2πt(2m−1))
]2

= e−πt/16
1

η(2it)

[

∏

(1 − (−)me−2πtm)
]2

so
e−πt/12

∏

(1 − (−)me−2πtm) =
√

ϑ00(0, 2it)η(2it)

replaces η(it). zero modes are still the same , so... Recall the cylinder

ZX = iV

(

1√
8π2α′t

)D

η(it)−(D−2)

The partition function for the Möbius strip is

ZX = iV

(

1√
8π2α′t

)D

(ϑ00(0, 2it)η(it))
−(D−2)/2

.

Next, do the ψ’s. Easier to work in the R-sector (only one contribution)

Zψ,R = Tr ΩqNψ = −24

[

q1/16q−1/48
∞
∏

m=1

(1 + (−)mqm)

]8

which can be written in terms of Jacobi-theta functions as follows:

ϑ01(0, τ) =

∞
∏

m=1

(1 − qm)(1 − qm−1/2)

ϑ10(0, τ) = 2q1/8
∞
∏

m=1

(1 − qm)(1 + qm)2

so

ϑ01(0, τ)ϑ10(0, τ) = 2q1/8
∞
∏

m=1

(1 − qm)
∏

m

(1 + (−)(
√
q)m)2,

so let q = e−4πt.

ϑ01(0, τ)ϑ10(0, τ)

η(0, 2it)2
= 2eπt/3e−πt/2

∏

m

(1 + (−)(
√
q)m)2
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so

Zψ,R = −
(

ϑ01(0, τ)ϑ10(0, τ)

η(0, 2it)2

)4

.

AtD = 10

ZR =

∫ �

0

dt

2t

1

2

1

2
ZXZψ,R = iV

∫ �

0

dt

8t
(8π2α′t)−5

(

ϑ01(0, τ)ϑ10(0, τ)

η(0, 2it)2

)4

.

To study the t→ 0 limit, switch the variable to s = π/t. Then

ZR = iV
8

(8π2α′)5

∫ ∞

0

ds

(

ϑ01(0, 2is/π)ϑ10(0, 2is/π)

η3(2is/π)ϑ00(2is/π)

)4

for small s, we have

ϑ01(0, 2is/π) ' 1 + ...,

ϑ01(0, 2is/π) ' 2q1/8 + ...

ϑ00(0, 2is/π) ' 1 + ...,

η(2is/π) ' q1/24 + ...

so
ϑ01ϑ10

η3ϑ00
=

2q1/8

q1/8
= 2 + ...⇒

(

ϑ01ϑ10

η3ϑ00

)4

= 24 + ... = 16 + ...

no tachyon, and sixteen massless modes contributing, as expected. c.f. for
the cylinder,

ZR = −ZNS = i
V

8π(8π2α′)5

∫ ∞

0

ds(16 + ...).

of opposite sign, but they do not cancel!

The Klein Bottle

Even though a bottle looks more appropriate for closed strings, and ampli-
tudes are defined in terms of closed string modes, the Klein bottle contributes
to open strings.
DEFINITION: Consider a torus with τ = it. we identify the sides σ = 0 and
σ = 2π and obtain a cylinder, but just like with the Möbius strip, we identify
the sides τ = 0 and τ = 2πτ by twisting them first

Xµ(σ, 0) = Xµ(−σ, 2πt) = ΩXµ(σ, 2πt)Ω−1

The partition function is given by

ZX = Tr Ωe−2πtL0e−2πtL̃0
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In this case, ΩαµnΩ
−1 = −α̃µn (unlike for open strings, whereαµn → −αµn) There-

fore, the diagonal elements if Ω have exactly the same αµn’s as α̃µn’s.
So the trace is effectively over theαµn’s only, which explains why this is an open
string amplitude.
For the diagonal elements of Ω we have Ω = +1 (even total # of αµn, α̃

µ
n.) and

Ł0 = L̃0, so
ZX = Tr e−4πtLoΩ

∣

∣

Ω=1

which is the same as open string partition function, but with q2 instead of q
(or 2t instead of t)

ZX = iV (4πα′t)−D/2(η(2it))−(D−2)

Note the first factor has a 4 rather than an 8 due to the closed string.
The partition function for theψµ’s is obtained similarly. The result is the same
as the open string (cylinder) again, but with t→ 2t.

ZNSψ =
1

(η(2it))4
[

ϑ4
00(2it) − ϑ4

10(2it)
]

and ZNSψ = −ZRψ . Overall

ZNS =

∫ ∞

0

dt

2t

1

2

1

2
ZXZ

NS
ψ = iV

∫ ∞

0

dt

8t
(4π2α′t)−s(η(2it))−12

[

ϑ4
00(2it) − ϑ4

10(2it)
]

andZR = −ZNS. The study of the t→ − limit can be copied from the cylinder
with an extra 210 factor

ZNS = i
210V

8π(8π2α′)5

∫ ∞

0

ds(16 + ...)

Again there is no tachyon, but alas, Zcylinder +Zmobius +Zklein still has a non-
vanishing divergence. What do we do? We need to introduce Chan-Paton
factors!
Chan-Paton factors were first introduced in QCD, where the string was made
of glue. They attached quarks at the ends of the string which carried indices
labeling color.
In the present setting, we will introduce them because we can. They do not
spoil Lorentz invariance, because they live at the ends of the string. They are
useful because they give us extra degrees of freedom, which are needed to
describe gauge interactions.
e.g. E&M: Kaluza-Klein added an extra index throughout the string (didn’t
know about strings, but that is what they effectively did.) (X0, ..., X3, X4): X4

was the extra-dimension. This spoiled Lorentz invariance, but that was ok,
because we only care about Lorentz invariance in four dimensions. The ex-
tra dimension gave us a gauge group (U(1)) corresponding to a photon. More
dimensions give us more complicated gauge groups and extra degrees of free-
dom.
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With Chan-Paton factors, the gauge group does not come from extra dimen-
sions, but from extra degrees of freedom at the ends of the string (open of
course). Yet another innovation of string theory!
So all states now carry two more indices |0〉 → |0, ij〉, so, e.g. we now have
n2 tachyons or photons, if i, j = 1, 2, ..., n. Thus, the photon can be the weak
boson multiplet (W±, Z0), or the gluon.
How does this effect the partition function? For the cylinder, all n2 states con-
tribute equally, so Z is multiplied by n2. For the Möbius strip ,because of the
twist, i needs to be identified with j, and there are n possibilities, ZMobius →
nZMobius.
For the Klein bottle, we have no indices, because we have closed strings, so
ZKlein → ZKlein.
Overall, the partition function is now

Z = n2Zcylinder + nZMobius + ZKlein.

Recall for the R-sector

Zcylinder = −i V

8π(8π2α′)5

∫ ∞

0

ds(16 + ...)

ZMobius = i
26V

8π(8π2α′)5

∫ ∞

0

ds(16 + ...)

ZKlein = −i 210V

8π(8π2α′)5

∫ ∞

0

ds(16 + ...)

Z = −i(n− 25)2
V

8π(8π2α′)5

∫ ∞

0

ds(16 + ...)

We obtain a finite answer if and only if n = 25 = 32. This implies that out of
all possible gauge groups, type I string theory makes a unique choice: SO(32).
This was a crucial discovery that led to the explosion of interest in string the-
ory.


