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UNIT 4

Tree-level Amplitudes

4.1 String Interactions

In particle theory, we need to introduce a multi-particle space (Fock space)
where creation and annhilation are possible. In string theory, the tools we
have developed for one string are sufficient for the description of multi-string
states and interactions! The entire quantum theory of strings is based on
these tools!

Example of particle interactions
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1/k2: inverse of the Klein-Gordon operator �φ = 0, �
−1 ∼ 1/k2 There is a

pole at k2 ∼ 0, e.g., β-decay
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Amplitude∼ 1
k2−m2

W

, pole at k2 = m2
W , resonance.

Strings

The interaction consists of strings joining and splitting. Where do they join?
This is a stupid question. It depends on the time slicing. Therefore this is a
fuzzy interaction. Moreover, the shape (geometry) of the surface is not im-
portant, only the topology is important. There is one diagram for all tree dia-
grams.
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Example

Interaction point

〉

|A〉
Incoming string

Outgoing string

(arbitrary)

+∞

−∞

t

|B

There is an arbitrary interaction point. The amplitude is constructed by join-
ing two semi-infinite cylinders. Map the cylinders to a plane:

C
|A〉

|B〉
z

C

cylinder → C
⋃{∞} = S2 (sphere). This is done through stereographic pro-

jection (sphere=fat cylinder).
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Amplitude: sphere with states (operator insertions) at North and South poles.
Notice the equivalence of the two poles (clinder z → 1

z ).

Open Strings

Make a strip by cutting the cylinder in half along the axis.

z

We then map the strip to the upper-half plane which can then be mapped to
the unit circle via the mapping z → z−i

z+i .

80

Each string is a semi-infinite cylinder (or strip), which is mapped to a disk.
When we put two on a sphere, they were simply represented by insertion of
A(z) at z = 0, z = ∞.
Guess: For scattering of N strings we can do the same, i.e., on a sphere select
points z1, z2, ..., zN and insert operators Ai(zi). Then the amplitude is

A ∼ 〈0|A1(z1)A2(z2)...AN (zN )|0〉.
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NowA(0) is equivalent to
∮

C
dz
2πiA(z).

For conformal invariance, we require that all Ai have dimension hi = 1 so
that

∫

dzAi(z) have zero dimension (conformally). Then we should define

Amp ∼
∫

dz1...dzN 〈0|A1(z1)...|0〉.

In fact, the measure should read
∫

d2z1...d
2zN , but we will not be writing the

z̄ piece explicitly. The proper dimension of Ai(z, z̄) should be hi = 1, h̄i = 1.
In general,

A(z) ∼: ∂m1X∂m2X...eik·X :,

where h = m1 +m2 + ...α′k2 = 1. We shall work with the simplest caseA(z) =
eik·X , k2 = 1

α′
. The rest is similar.

Complication: The amplitude is conformally invariant: z → z + εv(z) where
v(z) is analytic. v(z) should be analytic everywhere in C ∪ {∞}. We need to
check that the transformation is analytic at infinity. So let z 7→ 1

z = z′.

δz′ = − 1

z2
δz = −ε 1

z2
v(z) = −εz′2v

(

1

z′

)

.

therefore v(z) = a+bz+cz2 so that z
′2v

(

1
z′

)

is analytic. This is a six-parameter
family of transformations. It includes SO(3) (rotation group). Special Cases:
• z 7→ z + εa generated by L−1. Recall [Lm, A] = zm+1∂A + h(m + 1)zmA
where h = 1 for BRST invariance. So [L−1, A] = ∂A − 1

zA i.e., L−1 generates
translations in z.
Finite transformation: z 7→ z + a,

A(z) → eaL−1A(z)e−aL−1 = A(z + a).

•z 7→ z + εbz = (1 + εb)z generated by L0.

[L0, A] = z∂A+A.

A(z) → ebL0A(z)e−bL0 = A(ebz).

Finite transformation: z → ebz.
•z 7→ z + εcz2 generated by L1.

[L1, A] = z2∂A+ zA.

Finite transformations: z → z
1−cz = z′

A(z) → ecL1A(z)e−cL1 = A

(

z

1 − cz

)

.

Combination of all three: z 7→ az+b
cz+d , ad − bc = 1 defines the group SL(2,C)

whose algebra is

[L1, L−1] = 2L0, [L1, L0] = L1, [L−1, L0] = −L−1.
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This is a closed algebra (no constant term) and is common in all conformal
field theories.
How come a matrix entered acting on a number z? Answer: Consider the
vector

(z1, z2)

(

a b
c d

) (

z1
z2

)

=

(

az1 + dz2
cz1 + dz2

)

.

Let z = z1/z2. Then

z 7→ az1 + bz2
cz1 + dz2

=
az + b

cz + d
.

For open strings: the Real axis is a boundary, and the group of symmetries
becomes SL(2,R), a, b, c, d ∈ R. Then under z → az+b

cz+d , ∂ is invariant. The
upper-half plane maps to itself.
Amplitude for open strings:

z z zz1 2 3 4

z

Amp ∼ 〈V (z1)V (z2)...V (zN )〉, zi ∈ R,

where the product is time ordered and thus the zis are ordered. How do we
integrate over zi? Due to SL(2,R) symmetry, we have redundency, so naive
integral would be proportional to the volume of SL(2,R) which is infinite! We
need to fix the gauge by choosing three points. Easiest to fix them to (0, 1,∞).
This is an arbitrary choice, but all choices are equivalent by the SL(2,R) sym-
metry. We will integrate over the rest of the parameters.

Example 1: Three tachyons

Consider three tachyons, Vi(z) =: eiki·X(z) : The amplitude is given by

A ∼ 〈0|V1(z1)V2(z2)V3(z3)|0〉,

where

Xµ(z) = xµ − i
α′

2
pµ ln |z|2 + i

√

α′

2

∑

m6=0

1

m
aµ

m

(

z−m + z̄−m
)

.

Since z ∈ R, Xµ reduces to

Xµ(z) = xµ − iα′pµ ln |z| + i
√

2α′
∑

m6=0

1

m
aµ

mz
−m.
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Since we can fix three points, let us choose (z1 = ∞, z2 = 1, z3 = 0), then

V3(z3 = 0)|0〉 = |0; k3〉, 〈0|V1(z1 = ∞) = 〈0;−k1|.

The amplitude becomes

A ∼ 〈0;−k1|V2(z2 = 1)|0; k3〉 = 〈0;−k1|0; k2 + k3〉 = δD(k1 + k2 + k3).

One can derive this for arbitrary z1, z2, z3, due to the SL(2,R) symmetry.

Example 2: Two tachyons and one vector

Consider two tachyons, Vi(z) =: eiki·X(z) : and a vector,Vj(z) =: Aµ∂Xµe
ikj ·X(z) :,

where k2
j = 0. We may act the vertex operators on the vacuum states

A ∼ 〈0;−k1|V2(1)Aµ∂Xµ|0; k3〉 ∼ 〈0;−k1|eik2·xe

�
α′

2
a1·k2Aµα

µ
−1|0; k3〉

∼
√

2α′A · k2δ
D(k1 + k2 + k3). (4.1.1)

A is transverse to it’s momentum (A · k3 = 0) therefore, the amplitude is

A ∼
√

α′

2
A · (k2 − k1)δ

D(k1 + k2 + k3),

where the dot product represents the coupling of the electromagnetic poten-
tial to the charged scalar. We may check the gauge invariance of the ampli-
tude. Using the gauge transformation Aµ → Aµ + ωkµ

3 , the amplitude be-
comes

δ(A) ∼ k3 · (k2 − k1) = k2
2 − k2

1 = 0.

Example 3: Four tachyons

This is the first nontrivial amplitude. Due to the SL(2,R) symmetry, we may
fix three operators. Now we have an extra operator we can not fix. We must
integrate over its parameter. After we operate vertex operators on the vacuum
states, the amplitude is given by

A ∼ 〈0;−k1| : eik2·X(1) :: eik3·X(z) : |0; k3〉.

This is a time-ordered product and we must integrate over z from [0, 1]. The
amplitude becomes

A ∼
∫ 1

0

dz〈0;−k1| : eik2·X(1) :: eik3·X(z) : |0; k4〉.

Using the mode expansion of Xµ,

A ∼
∫ 1

0

dz〈0;−k1|eik2·xe
√

2α′ �
m>0

k2·αm/meik3·xei α′

2
k3·p ln |z|e

√
2α′ �

n>0
k3·α−n/n|0; k4〉.
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Using the Hausdorff formula, eAeB = e[A,B]eBeA,

A ∼
∫ 1

0

dz〈0;−k1|z2α′k3·k4e−2α′k2·k3
� zm/m|0; k3 + k4〉

∼
∫ 1

0

dzz2α′k3·k4(1 − z)−2α′k2·k3δD(k1 + k2 + k3 + k4)

Define the Mandelstam variables

θk

k

k

k

1

3

2

4

s = (k1 +k2)
2 = (k3 +k4)

2 = −2k3 ·k4−
2

α′ , t = −(k2 +k3)
2, u = −(k2 +k4)

2,

and

s+ t+ u = − 4

α′ .

The amplitude expressed in terms of Mandelstam variables becomes

A ∼
∫ ∞

0

dzz−α′s−2(1 − z)−α′t−2δD(k1 + k2 + k3 + k4) ∼ B(−α′s− 1, α′t− 1),

where B is the Euler-beta function with the property

B(x, y) =
Γ(y)Γ(y)

Γ(x+ y)
.

This is known as the Veneziano amplitude. Note, there are poles at −α′s−1 =
0 and α′t− 1 = 0. Let us focus on the first pole (−α′s− 1 = 0).

A ∼ Γ(−α′s− 1) =
Γ(−α′s)

α′s+ 1
+ ... (Γ(x+ 1) = xΓ(x))

∼ − 1

−α′s+ 1
+ ...

The pole is due to an intermediate tachyon (s = −1/α′). Unitarity requires
This checks, since The next pole is at α′s = 0.

Γ(−α′s− 1) = −Γ(−α′s)

α′s+ 1
=

Γ(−α′s+ 1)

(α′s+ 1)(α′s)
=

1

α′s
+ ...

The amplitude becomes

A ∼ 1

α′s

Γ(−α′t− 1)

Γ(−α′t− 2)
=

Γ(−α′t− 2)

α′s
+ ... =

u− t

2s
+ ...
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where we used the condition s+ t+ u = −4/α′.
Check unitarity: The amplitude is gauge invariant. Summing over the polar-
izations

∑

εµεν = ηµν gives the amplitude

A ∼ α′ (k1 − k2)(k3 − k4)

2k2
=
u− t

2s
.

All the poles in α′s : α′s = −1, 0, 1, 2, ... which are the masses of the open
string states. (α′s2 = N − 1 from L0 − 1 = 0). Curious Result: same structure
of poles we obtain for α′t, since the amplitude is symmetric in s and t. This
would also be true of a field theory amplitude.
Alternate derivation of the poles: It is instructive to find the poles without per-
forming the integral for two reasons. (a) We can not always do the integral. (b)
We can see what type of world-sheet contributes to the pole (physical picture
for an effective field theory).
Let z → 0

A ∼
∫

0

dzz−α′s−2 + ... =
z−α′s=1

−α′s− 1

∣

∣

∣

∣

∣

0

+ ... = − 1

α′s+ 1
+ analytic.

Taylor expansion:

A ∼
∫

0

z−α′s−2(1 − z)−α′t−2 =

∫

0

dzz−α′s−2(1 + (α′t+ 2)z + ...),

where the first and second terms in the expansion represent the α′s = −1 and
α′s = 0 poles respectively. The other poles are acquired through higher order
terms in the expansion. Poles in α′t are obtained from z → 1.

3 k 4

0 81z

k k k1 2

There is no reason to restrict
∫

dz to
∫ 1

0 dz. We would like to extend the integral

to
∫ ∞
∞ dz. The integral becomes

∫ 0

−∞ +
∫ 1

0
+

∫ ∞
1

.
∫ 0

−∞: ordering (k1 + k2 + k3 + k4) which is
∫ 1

0 with k2 ↔ k1. The effect is

switching t and u. This can be seen through the transformation z 7→ 1 − 1
z

which maps (0, 1) 7→ (−∞, 0). Therefore, if
∫ 1

0
= I(s, t) then

∫ 0

−∞ = I(t, u).

Similarly,
∫ ∞
1 = I(s, u). Therefore, the integral becomes

∫ ∞

−∞
= I(s, t) + I(s, u) + I(t, u).

Now the amplitude is completely symmetric in s, t, u.
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BRST invariance

If V (z) has weight h = 1, then
∫

dzV (z) has weight h = 0. It is BRST invariant.
Let us check this.

[Q, V (z)] =
∑

c−n[Ln, V (z)] =
∑

c−n(zn+1∂V (z) + (n+ 1)znV (z))

= c(z)∂V (z) + ∂c(z)V (z) = ∂(c(z)V (z))

Therefore

[Q,

∫

V ] =

∫

∂(c(z)V (z)) = 0.

What happens with the three V s that we fixed? To turn them into h = 0 oper-
ators, we multiply them by c(z). Then c(z)V (z) has the weight h = 0.

{Q, cV } = {Q, c}V − c[Q, V ] = c∂cV − cc∂V − c∂cV = 0.

Now in the amplitude, we have three c(z)s, zi = 0, 1,∞. The amplitude must
be defined with respect to the SL(2,R) invariant vacuum. Recall:

b0|ψ〉 = 0, |χ〉 = c0|ψ〉.

Lbc
m =

∑

n

(2m− n) : bncm−n : −δm,0

So,

Lbc
0 =

∑

n

n : b−ncn : −1, Lbc
1 =

∑

n

(2−n) : bnc−n :, Lbc
−1 =

∑

n

(−2−n) : bnc−n−1 : .

The operators act on the states

Lbc
0 |ψ〉 = −|ψ〉, Lbc

1 |ψ〉 = 0, Lbc
−1|ψ〉 = b−1|χ〉,

So |psi〉 is not invariant. Let |0〉 = b−1|ψ〉.

[Lbc
0 , b−1] = b−1, [Lbc

1 , b−1] = 2b0, [Lbc
−1, b−1] = 0.

Therefore,

Lbc
0 |0〉 = b−1|ψ〉−b−1|ψ〉 = 0, Lbc

−1|0〉 = b−1b−1|ψ〉 = 0, Lbc
−1|0〉 = b−1b−1|χ〉 = 0.

So, |0〉 is SL(2,R) invariant.
The ghost contribution is

〈0|c(∞)c(1)c(0)|0〉, c(z) =
∑

n

cnz
−n+1.

c(0)|0〉 = c1|0〉 = |ψ〉, 〈0|c(∞) = 〈ψ|, ψ|c(1)|ψ〉 = 〈ψ|c0|ψ〉 = 1.
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High Energy

θk

k

k

k

1

3

2

4

kµ
1 = (E/2, ~p), kµ

2 = (E/2,−~p), kµ
3 = (−E/2,−~p′), kµ

4 = (−E/2, ~p′).

where
(

E
2

)2 − ~p2 = m2, |~p′| = p. The Mandelstam variables become

s = −(k1+k2)
2 = E2, t = −(k1+k3)

2 = (4m2−E2) sin2 θ

2
, u = −(k1+k4)

2 = (4m2−E2) cos2
θ

2
.

The high energy limit is equivalent to the small angle limit, where s→ 0 and t
is fixed. The gamma function is approximated by

Γ(x) ∼ xxe−x

√

2π

x
.

The amplitude is

A ≈ Γ(−α′s− 1)Γ(−α′t− 1)

Γ(−α′s− α′t− 2
≈ s−α′s−1

s−α′s−α′t−2
eα′t+1Γ(−α′t−1) ∼ sα′t+1Γ(−α′t−1).

This is the Regge behavior. At the poles α′t − 1 ∼ −n, the amplitude goes as
A ∼ sn which is the exchange of a particle of spin n.
For a fixed angle,θ=fixed: s, t→ ∞, s/t = fixed. The amplitude becomes

A ∼ s−α′s−1t−α′t−1

(s+ t)−α′s−α′t
∼ s−α′st−α′t

uα′u
∼ e−α′(s ln s+t ln t+u ln u)

≈ e−α′(s ln(s/s)+t ln(t/s)+u ln(u/s))

≈ e−α′s( t
s

ln t
s
+ u

s
ln u

s

≈ e−α′s(− sin2 θ
2

ln sin2 θ
2
−cos2 θ

2
ln cos2 θ

2 )

≈ e−Cs, C > 0.

unlike in field theory, where the amplitude goes as A ∼ s−n. Therefore the
underlying smooth extended object of size

√
α′.

4.2 A Short Course in Scattering Theory

We define the 〈in| state in the real infinite past (t→ −∞), and the |out〉 state in
the infinite future (t → ∞). These states are both described by free particles.
There is an isomorphism

|in〉 = S|out〉, S = lim
t→∞

eiHt/~..
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To conserve probabilities, S must be unitary, S†S = 1 (c.f. unitarity of evolu-
tion operator, U = eiHt/~). The transition probability (S = I + iT ) is

|〈i−∞|f∞〉|2 = |〈i|T |f〉|2,

where |i > and |f〉 represent states in the same Hilbert space. We will discard
the I because it represents |i〉 → |i〉 (forward scattering i.e., along the beam:
undetectable).
Unitarity

S†S = I = I + i(T − T †) + T †T.

Therefore

〈i|T |f〉 − 〈i|T †|f〉∗ = i〈i|T †T |f〉.

Insert complete sets of physical states

〈i|T |f〉 − 〈i|T †|f〉∗ = i
∑

n

〈i|T †|n〉〈n|T |f〉,

2Im < i|T |f〉 =
∑

n

< i|T |n〉〈f |T |n〉∗. (4.2.1)

Viewed as a function of s, 〈i|T |f〉 has poles in s. Away from the pole, 〈i|T |f〉 is
real, so the left hand side vanishes.
Near the pole, we obtain a behavior ∼ 1

s+m2 (pole at s = −m2). to find the
imaginary part, first regulate the amplitude

1

s+m2
→ 1

s+m2 + iε

for small ε. Then

Im
1

s+m2
→ Im

1

s+m2 + iε
=

−ε
(s+m2)2 + ε2

= −πδ(s+m2).

Therefore, for

INSERT FIGURE HERE

the imaginary part is

INSERT FIGURE HERE

This is in agreement with unitarity.

4.3 N-point open-string tree amplitudes

Amp ∼ 〈: eik1·X(z1) : ... : ek2·X(zn) :〉 = A(z1, ..., zn)



4.3 N-point open-string tree amplitudes 71

Consider
∂1A(z1, ..., zn) ∼ 〈∂z1

: eik1·X(z1) : ... : ek2·X(zn) :〉
To evaluate this, consider the OPE

ik · ∂X(z) : eik1·X(z1) :=
α′k2

1

2(z − z1)
eik1·X(z1) : +∂1 : eik1·X(z1) : +...

So, first replace ∂1 : eik1·X(z1) : by ∂X(z) : eik1·X(z1) : in Amp and define

fµ(z) = 〈∂Xµ(z) : eik1·X(z1) : ... : eikn·X(zn) :〉

The singularity structure of fµ(z) can be deduced from OPEs

z

1 z3z2 zn...

C

z

∂X(z) : eik1·X(z1) := − iα′kµ
1

2(z − z1)
eik1·X(z1) : +...

Therefore,

fµ(z) = − iα
′

2
A(z)

n
∑

i=1

kµ
1

z − zi
+ ...

Behavior at z → ∞ : z′ = 1
z

∂Xµ =
∂z′

∂z
∂′Xµ = − 1

z2
∂′Xµ

which implies

fµ(z) = − 1

z2
〈∂′Xµ + ...〉.

Therefore, as z → ∞, fµ(z) ∼ 1
z2 → 0 (〈∂′Xµ : ... :〉 analytic at ∞) Therefore

the holomorphic piece vanishes and

fµ(z) = − iα
′

2
A

n
∑

i=1

kµ
i

z − zi
.

Now define a contour C surrounding all zi’s. There are two ways to evaluate

the contour integral,
∮

dz
2πif(z). Cauchy ⇒

∮

dz
2πif

µ(z) = − iα′

2 A
∑n

i=1
kµ

i

z−zi
, or

in the transformed coordinate z′=1
z , C encircles z′ = 0 where fµ(z) is analytic.

Therefore
∮

dz

2πi
fµ(z) = 0 ⇒

n
∑

i=1

kµ
i = 0
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The momentum is conserved.
Now consider ik · f and compare with the OPE

ik · ∂x(z) : eik·X (z1) :=
α′k2

1

2(z − z1)
: eik1·X(z1) : +∂1 : eik1·X(z1) : +...

which implies

ik · f =
α′

2

k2
1

z − z1
A+

α′

2

∑

i6=1

k1 · ki

z − zi
A

Therefore

∂1A =
α′

2

k2
1

z − z1
A+

α′

2

∑

i6=1

k1 · ki

z − zi
A.

Therefore

∂1 lnA =
α′

2

∑

i6=1

k1 · ki

z1 − zi
A.

Repeating for other points,

∂j lnA =
α′

2

∑

i6=j

kj · ki

zi− zj
A.

By integrating we obtain lnA =
∑

i<j ln |zi − zj |ki·kj + const where we added
the z̄ piece. Therefore,

A ∝
∏

i<j

|zi − zj |α
′ki·kj .

For open strings, α′ → 2α′, so

A ∝
∏

i<j

|zi − zj |2α′ki·kj .

SL(2, R) Invariance

z → z′ =
az + b

cz + d
, czz′ + dz′ = az + b→ z =

dz′ − b

a− cz′
, ad− bc = 1.

Therefore,

zi − zj =
dz′i − b

a− cz′i
− dzj − b

a− cz′j
=

z′i − z′j
(a− cz′i)(a− cz′j)

. (4.3.1)

Therefore,

A ∝
∏

i<j

|zi−zj |2α′ki·kj =
∏

i<j

|z′i−z′j |2α′ki·kj

∏

(a−cz′i)2α′k2

i , k2
i =

1

α′ . (4.3.2)
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dzi =
dzi

(a− cz′i)
2
.

If we let zj → zi in (4.3.1), we find that the amplitude is invariant under
SL(2, R) transformations. The measure is given by

∏

dzi =
∏

dz′i
∏

(a− cz′i)
−2,

however, the last factor cancels with the overall factor in (4.3.2).

4.4 Closed Strings

For open strings we found four tachyons,

Aopen ∼
∫ ∞

−∞
dz z2α′k3·k4(1 − z)2α′k2·k3δD(k1 + k2 + k3 + k4)

=

∫ 0

−∞
+

∫ 1

0

+

∫ ∞

1

where

∫ 1

0

= I(s, t) =

∫ 1

0

dz z−α′s−2(1 − z)−a′t−2δD(k1 + k2 + k3 + k4)

∫ 0

−∞
= I(t, u),

∫ ∞

1

= I(s, u), z ∈ R.

For closed strings, z is the entire C and we need to multiply the holomorphic
and anti-holomorphic pieces, so

Aclosed ∼
∫

d2z |z|−α′s/2−4|1 − z|−α′t/2−4.

Note: s→ s/4 is due to the different expansion of theXµs. The tachyon mass
is m2 = − 4

α′
, whereas for the open string it is, m2 = − 1

α′
.

To calculate the amplitude for the closed string, treat z and z̄ as independent
variables and deform the contour of integration until it coincides with the real
axis. Then z, z̄ ∈ R. We must take care with the branch cuts.
There are three cases.
(i) z̄ < 0: Contour for z:

1

z

0
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C has branch cuts on the same side and therefore contributes nothing.

(ii) z̄ > 1:

There is no contribution for the same reason as in (i).

(iii) 0 < z̄ < 1:

C

z

10

Aclosed ∼
∮

dz z−α′s/4−2(1 − z)−α′t/4−2 ×
∫ 1

0

dz̄ z̄−α′s/4−2(1 − z̄)−α′t/4−2

Contribution from the upper side of C is

∫ ∞

1

dη|η|−α′s/4−2e−iπ(α′t/4+2)|1 − η|−α′t/4−2 × I(s/4, t/4).

The lower side gives

∫ ∞

1

dη |η|−α′s/4−2e+iπ(α′t/4+2)|1 − η|−α′t/4−2 × I(s/4, t/4).

Therefore the amplitude for the closed string is

Aclosed ∼ sin
πα′t

4
I(t/4, u/4)I(s/4, t/4).

This can be cast in a symmmetric form by using the transformation proper-
ties of the Gamma function

Γ(x)Γ(1 − x) =
π

sin(πx)
, for

−α′t

4
− 1

So, since s+ t+ u = 4m2 = −16/α′

Γ(−α′t/4− 1)Γ(2 + α′t/4) =
π

sin(α′tπ/4)
.

Therefore the amplitude is given by

Aclosed ∼ π
Γ(−α′s/4− 1)Γ(−α′t/4− 1)Γ(−α′u/4− 1)

Γ(−α′s/4− α′t/4− 1)Γ(−α′t/4− α′u/4− 1)Γ(−α′u/4− α′s/4− 1)
.
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4.5 Moduli

Build closed-string four-point amplitude as follows. In the z-plane, drill holes.
This will represent the diagram on the left with amputated legs. Now attach
the legs by telescopically collapsing each semi-infinite tube to a disc:

′z

Next, patch the discs on the z-plane. This produces a sphere with four punc-
tures. There will be regions of overlap where z ′ = f(z).

of disk

∂ of hole in z−plane

z

∂

By conformal transformations, I can fix three points (due to SL(2,C) symme-
try). The fourth point cannot be fixed. Call it z. Punctured spheres with
two different z’s, are not related by a conformal transformation. There are
inequivalent surfaces.
They are parametrized by two parameters, z1 and z̄1 ∈ C. These parameters
are called moduli and their space, moduli space (although it should be called
modulus space) (c.f. vector space). They are also called Teichmuller parame-
ters. They label conformally inequivalent surfaces. To calculate amplitudes,
we need to integrate over the moduli.
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E.g., the four-point amplitude, 〈V1(∞)V2(1)V3(z1)V4(0)〉need to integrate over
z1 →

∫

d2z1. In general, N-point amplitudes integrate
∫

d2z1...d
2zN−3 at z =

∞, 1, 0 we specified V ∼ cc̃ : eik·X :. We can do the same for the unfixed V ’s
to put them all on equal footing.
Thus, let Vi = cc̃ : eiki·X :, ∀i. Since we introduced an extra c, c̃, we need to
compensate for it with a b, b̃ insertion.
To do this work as follows. Shift z1 → z1 + δz1. This is implemented in the
z′-plane by a coordinate transformation

z′ → z′ + δz1v
z(z′, z̄′).

where vz is of course not conformal (depends on z as well as z̄). Introduce the
Beltrami differential.

ψ = ∂z̄v
z

There is a similar differential for the complex conjugate

ψ̄ = ∂zv
z̄

If vz represents a conformal transformation, then ψ, ψ̄ = 0. Thus ψ encodes
information about conformally inequivalent surfaces.
We will insert 1

2π

∫

d2z′(pψ + b̃ψ̄)× anti-holomorphic in the amplitude. We
integrate over the patch that we will use so

Amp ∼
∫

d2z1〈V1V2V3V4

(

1

2π

∫

d2z′(pψ + b̃ψ̄) × (anti)

)

〉

Since ∂z̄b = 0, the integral is ∼
∫

d2z′
(

∂z̄(bv
z) + ∂z(b̃v

z̄)
)

. Therefore it can be

written as (divergence theorem)

B1 =
1

2πi

∮

C

(

dz′bvz − dz̄′b̃vz̄
)

where C is in the overlap region of z and z′.

C

z

Explicitly,

vz =
∂z′

∂z1
.
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In the overlap region, z = z′ + z1, so vz + 1 = 0, therefore vz = −1. Therefore

1

2πi

∮

C
= dz′bvz = −b−1, b(z) =

∑

bnz
−n−2, c =

∑

cnz
−n+1.

∫

dz1b−1V3 =

∫

dz1b−1cc̃ : eik3·X(z1) := c̃ : eik3·X(z1)

where

b−1c =

∮

C
dz′b(z′)c(z1) = 1.

∫

dz1b−1c̃ : eik3·X(z1) :=: eik3·X(z1) :

so the b-insertions kill cc̃ from V3 and the amplitude is as before.

4.6 BRST Invariance

{QB, B1} =
1

2πi

∮

c

dz′
(

Tvz − dz̄T̄ vz̄
)

Recall

T (z′)V3(z1) =
h

(z′ − z1)2
+

1

z′ − z1
∂V3 + ..., h = 0!

Therefore {QB, B1}V3 ∼
∮

dz′∂V3 = 0 unless the moduli space has ∂ (not true
here, but argument is general and sometimes ∂ 6= 0).


