Problem 4.1

(a) Draw a quantum circuit using two qubits to construct the state

$$
\left|\psi_{N}\right\rangle=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1}|j\rangle
$$

from $|0\rangle$ for $N=2,3,4$.
(b) Draw a quantum circuit using four qubits that maps

$$
|N-1\rangle \otimes|0\rangle \mapsto|N-1\rangle \otimes\left|\psi_{N}\right\rangle
$$

where $|N-1\rangle$ is a two-qubit state, for $N=2,3,4$.
Problem 4.2
(a) Let U be a 2×2 unitary matrix with $\operatorname{det} U=1$. Find unitary matrices A, B, C such that

$$
A B C=\mathbb{I}, \quad A X B X C=U
$$

Hint: Use the Euler angle construction to express U in terms of rotations, $U=R_{z}(\alpha) R_{y}(\beta) R_{z}(\gamma)$. Also note that $X R_{z}(\alpha) X=R_{z}(-\alpha)$.
(b) Consider a two-qubit controlled phase gate: it applies $e^{i \theta} \mathbb{I}$ to the second qubit, if the first qubit is in the state $|1\rangle$, and acts trivially otherwise. Show that it is actually a single-qubit gate.
(c) Draw a quantum circuit using CNOT gates and single-qubit gates that implements controlled- U for an arbitrary 2×2 unitary matrix U.

Problem 4.3

Continuous-time database search. A quantum system consisting of n qubits has the Hamiltonian

$$
H_{0}=E\left|x_{0}\right\rangle\left\langle x_{0}\right|
$$

where $\left|x_{0}\right\rangle \in\left\{|x\rangle, x=0,1, \ldots, 2^{n}-1\right\}$ is an unknown basis state.
To find x_{0}, we turn on a time-independent perturbation

$$
H^{\prime}=E|s\rangle\langle s|
$$

of the Hamiltonian, so that the total Hamiltonian becomes

$$
H=H_{0}+H^{\prime}
$$

where

$$
|s\rangle=\frac{1}{2^{n / 2}} \sum_{x=0}^{2^{n}-1}|x\rangle
$$

We prepare the system in the initial state $|s\rangle$ and allow it to evolve, as governed by H, for a time T. Then we measure the state to find x_{0}.
(a) Solve the time-independent Schrödinger equation

$$
i \frac{d}{d t}|\psi\rangle=H|\psi\rangle
$$

to find the state at time T.
(b) How should T be chosen to optimize the likelihood of successfully determining x_{0} ?

Problem 4.4
Universal quantum gates. The Hadamard and phase gates are defined, respectively, by

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad P=\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right)
$$

(a) Write out the 4×4 matrix representing the controlled phase gate $(C P)$ in the standard basis $\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$. Does it matter which qubit is the target? Explain.
(b) Consider the two-qubit unitary transformations,

$$
U_{i}=H_{i} . C P . H_{i}, \quad i=1,2
$$

where H_{i} is the Hadamard matrix acting on the i th qubit.
Write out the 4×4 matrices U_{1} and U_{2} in the standard basis, and show that they both act trivially on the states

$$
|00\rangle, \frac{1}{\sqrt{3}}(|01\rangle+|10\rangle+|11\rangle)
$$

(c) It follows that U_{1} and U_{2} act non-trivially only in the two-dimensional space spanned by

$$
\left\{\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle), \frac{1}{\sqrt{6}}(|01\rangle+|10\rangle-2|11\rangle)\right\}
$$

Show that, expressed in this basis, the two matrices are

$$
U_{1}=\frac{1}{4}\left(\begin{array}{cc}
3+i & -\sqrt{3}(1-i) \\
-\sqrt{3}(1-i) & 1+3 i
\end{array}\right), \quad U_{2}=\frac{1}{4}\left(\begin{array}{cc}
3+i & \sqrt{3}(1-i) \\
\sqrt{3}(1-i) & 1+3 i
\end{array}\right)
$$

(d) Express the two matrices in the form

$$
U_{i}=e^{i \phi_{i}}\left(\cos \theta_{i}+i \hat{n}_{i} \cdot \vec{\sigma} \sin \theta_{i}\right), \quad i=1,2
$$

and find the angles ϕ_{i}, θ_{i} and the unit vectors \hat{n}_{i}.
(e) Draw the quantum circuit for the transformation $U_{2}^{-1} U_{1}$.

Show that it performs a rotation of angle χ, where $\cos \frac{\chi}{2}=\frac{1}{4}$ in the two-dimensional space in which it acts non-trivially.
It can be deduced that H and $C P$ form a universal gate set.

