Due date: Wed., November 13, 2019
Problem 3.1
Alice and Bob share many identical copies of the two-qubit state

$$
|\psi\rangle=\sqrt{1-2 x}|00\rangle+\sqrt{x}|01\rangle+\sqrt{x}|10\rangle
$$

where $0<x<\frac{1}{2}$. They conduct many trials in which each measures his/her qubit in the basis $\{|0\rangle,|1\rangle\}$, and they learn that, if Alice's outcome is $|1\rangle$, then Bob's is always $|0\rangle$, and if Bob's outcome is $|1\rangle$, then Alice's is always $|0\rangle$.
Alice and Bob conduct further experiments in which Alice measures in the basis $\{|0\rangle,|1\rangle\}$, whereas Bob measures in the orthonormal basis $\left\{\left|\phi_{0}\right\rangle,\left|\phi_{1}\right\rangle\right\}$. They discover that, if Alice's outcome is $|0\rangle$, then Bob's outcome is always $\left|\phi_{0}\right\rangle$ and never $\left|\phi_{1}\right\rangle$. Similarly, if Bob measures in the basis $\{|0\rangle,|1\rangle\}$ and Alice measures in the basis $\left\{\left|\phi_{0}\right\rangle,\left|\phi_{1}\right\rangle\right\}$, then if Bob's outcome is $|0\rangle$, Alice's outcome is always $\left|\phi_{0}\right\rangle$ and never $\left|\phi_{1}\right\rangle$.
(a) Calculate $\left|\phi_{0}\right\rangle$ and $\left|\phi_{1}\right\rangle$.
(b) If Alice and Bob both measure in the basis $\left\{\left|\phi_{0}\right\rangle,\left|\phi_{1}\right\rangle\right\}$, what is the probability $P(x)$ that both obtain the outcome $\left|\phi_{1}\right\rangle$?
(c) Find the maximum value of the probability $P(x)$.
(d) Consider this argument: Suppose that Alice and Bob both measure in the basis $\left\{\left|\phi_{0}\right\rangle,\left|\phi_{1}\right\rangle\right\}$, and that they both obtain the outcome $\left|\phi_{1}\right\rangle$. If Alice had measured in the basis $\{|0\rangle,|1\rangle\}$, instead, we can be certain that her outcome would have been $|1\rangle$, since experiment has shown that if Alice had obtained $|0\rangle$, then Bob could not have obtained $\left|\phi_{1}\right\rangle$. Similarly, if Bob had measured in the basis $\{|0\rangle,|1\rangle\}$, then he certainly would have obtained the outcome $|1\rangle$. We conclude that, if Alice and Bob both measured in the basis $\{|0\rangle,|1\rangle\}$, both would have obtained the outcome $|1\rangle$. But this is a contradiction, for experiment has shown that it is not possible for both Alice and Bob to obtain the outcome $|1\rangle$, if they both measure in the basis $\{|0\rangle,|1\rangle\}$. We are therefore forced to conclude that, if Alice and Bob both measure in the basis $\left\{\left|\phi_{0}\right\rangle,\left|\phi_{1}\right\rangle\right\}$, it is impossible for both to obtain the outcome $\left|\phi_{1}\right\rangle$.
The above argument leads to the erroneous conclusion that $P(x)=0$. What is wrong with this argument?

Problem 3.2

Consider two particles, A (that belongs to Alice), and B (that belongs to Bob), whose trajectories are described by coordinates q_{A} and q_{B}, and their momenta are p_{A} and p_{B}, respectively. We have $\left[q_{A}, p_{A}\right]=\left[q_{B}, p_{B}\right]=i \hbar$. Consider the entangled state

$$
|Q, P\rangle=\frac{1}{\sqrt{2 \pi}} \int d q e^{i P q / \hbar}|q\rangle_{A}|q+Q\rangle_{B}
$$

where $|q\rangle_{A}\left(|q\rangle_{B}\right)$ is an eigenstate of the position operator $\boldsymbol{q}_{A}\left(\boldsymbol{q}_{B}\right)$ with eigenvalue q.
(a) Show that $|Q, P\rangle$ is a common eigenstate of the relative position operator, $\boldsymbol{Q}=\boldsymbol{q}_{B}-\boldsymbol{q}_{A}$, and the total momentum, $\boldsymbol{P}=\boldsymbol{p}_{A}+\boldsymbol{p}_{B}$.
(b) Verify that the states $|Q, P\rangle$ form an orthonormal set by showing that

$$
\left\langle Q^{\prime}, P^{\prime} \mid Q, P\right\rangle=\delta\left(Q^{\prime}-Q\right) \delta\left(P^{\prime}-P\right)
$$

(c) Calculate the coefficients $A\left(Q, P ; q_{A}, q_{B}\right)$ in the expansion of a position eigenstate,

$$
\left|q_{A}\right\rangle_{A}\left|q_{B}\right\rangle_{B}=\int d Q d P A\left(Q, P ; q_{A}, q_{B}\right)|Q, P\rangle
$$

(d) Alice and Bob share the entangled state $|Q, P\rangle$ of their two particles A and B. Charlie sends a third particle C with position operator \boldsymbol{q}_{C} and momentum operator \boldsymbol{p}_{C} to Alice in the state $|\psi\rangle_{C}$. Alice wants to teleport it to Bob.
Design a protocol that they can execute to achieve teleportation. What should Alice measure? What classical information should she send to Bob? What should Bob do when he receives this information so that particle B will be prepared in the state $|\psi\rangle_{B}$?

Problem 3.3

Consider a noisy entangled pair shared by Alice and Bob with density matrix

$$
\rho_{\lambda}=(1-\lambda)\left|\psi^{-}\right\rangle\left\langle\psi^{-}\right|+\frac{\lambda}{4} \mathbb{I}
$$

where $0<\lambda<1$, and $\left|\psi^{-}\right\rangle$is the singlet state

$$
\left|\psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
$$

(a) If Alice measures the spin of her qubit along the \hat{n}-axis and Bob measures his qubit along the \hat{m}-axis, what is the probability that they will both get spin up?
(b) Find the fidelity F that can be attained if the state ρ_{λ} is used to teleport a qubit from Alice to Bob.

Problem 3.4

The no-cloning theorem shows that we cannot build a unitary machine that will make a perfect copy of an unknown quantum state. But what if we are willing to settle for an imperfect copy? What fidelity might we achieve?
(a) Consider a machine that acts on three qubits according to

$$
\begin{aligned}
|000\rangle_{A B C} & \longrightarrow \sqrt{\frac{2}{3}}|00\rangle_{A B}|0\rangle_{C}+\frac{1}{\sqrt{3}}\left|\psi^{+}\right\rangle_{A B}|1\rangle_{C} \\
|100\rangle_{A B C} & \longrightarrow \sqrt{\frac{2}{3}}|11\rangle_{A B}|1\rangle_{C}+\frac{1}{\sqrt{3}}\left|\psi^{+}\right\rangle_{A B}|0\rangle_{C}
\end{aligned}
$$

where $\left|\psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$.
Design a machine that can do this, i.e., find a unitary matrix that implements the above transformation.
(b) For an input $\left|\Psi_{\text {in }}\right\rangle_{A B C}=|\psi\rangle_{A}|00\rangle_{B C}$, where $|\psi\rangle_{A}=a|0\rangle_{A}+b|1\rangle_{A}$, let $\left|\Psi_{\text {out }}\right\rangle_{A B C}$ be the output. Show that the output contains two identical, but imperfect, copies of $|\psi\rangle$, by showing that $\rho_{A}=\rho_{B}$, where

$$
\rho_{A}=\operatorname{Tr}_{B C}\left|\Psi_{\text {out }}\right\rangle\left\langle\Psi_{\text {out }}\right|, \quad \rho_{B}=\operatorname{Tr}_{A C}\left|\Psi_{\text {out }}\right\rangle\left\langle\Psi_{\text {out }}\right|
$$

are the respective states of the qubits A and B, each observed in isolation.
(c) Calculate the fidelity of the copy,

$$
F={ }_{A}\langle\psi| \rho_{A}|\psi\rangle_{A}
$$

