Homework Set 1

Due date: Fri., September 27, 2019

Problem 1.1

(a) Show with an explicit calculation that $\hat{n} \cdot \vec{\sigma}$ has eigenvalues ± 1 and that the projectors onto the corresponding eigenstates are $P_{ \pm}=\frac{1}{2}(\mathbb{I} \pm \hat{n} \cdot \vec{\sigma})$.
(b) If the system is in the state $|0\rangle$, what is the probability of obtaining the result +1 for a measurement of $\hat{n} \cdot \vec{\sigma}$, and what is the state of the system after the measurement, if the outcome is +1 ?

Problem 1.2

Consider a composite system consisting of systems A and B.
(a) If the composite system is in the state

$$
|\Psi\rangle=\left|\psi_{1}\right\rangle_{A} \otimes\left|\psi_{2}\right\rangle_{B}
$$

calculate the density matrices of the two systems, ρ_{A} and ρ_{B}, and show that they are both pure.
(b) If the composite system is in the state

$$
|\Psi\rangle=\mathcal{N}\left[\left|\psi_{1}\right\rangle_{A} \otimes\left|\psi_{2}\right\rangle_{B}+\left|\psi_{2}\right\rangle_{A} \otimes\left|\psi_{1}\right\rangle_{B}\right]
$$

with $\left\langle\psi_{1} \mid \psi_{2}\right\rangle \neq 0$, calculate the normalization constant \mathcal{N}, and find the density matrices ρ_{A} and ρ_{B}.
Show that $\operatorname{Tr} \rho_{A}=\operatorname{Tr} \rho_{B}=1$.

Problem 1.3

Consider a qubit in the state $|\psi\rangle$. It is rotated by an angle θ around the \hat{n} axis by acting on it with the operator

$$
R_{\hat{n}}(\theta)=e^{-i \frac{\theta}{2} \hat{n} \cdot \vec{\sigma}}
$$

The qubit is mapped onto the vector \vec{P} on the Bloch sphere, where $\vec{P}^{2}=1$.
(a) What is the density matrix ρ in terms of \vec{P} ?
(b) Let ρ^{\prime} be the density matrix after the qubit is rotated by an angle θ around the \hat{n} axis. Show that ρ^{\prime} corresponds to a vector \vec{P}^{\prime} on the Bloch sphere, which is obtained by rotating \vec{P} by an angle θ around the \hat{n} axis.

Problem 1.4

Find the Schmidt decomposition of the two-qubit states

$$
\frac{1}{\sqrt{2}}[|00\rangle+|11\rangle], \frac{1}{2}[|00\rangle+|01\rangle+|10\rangle+|11\rangle], \frac{1}{\sqrt{3}}[|00\rangle+|01\rangle+|10\rangle]
$$

Problem 1.5

Gleason's Theorem assigns probabilities $p\left(E_{\lambda}\right)$ to projectors $E_{\lambda}=|\lambda\rangle\langle\lambda|$. The assignment for each E_{λ} is independent of the other assignments.
A hidden-variable theory asserts that probabilities are derived from a more fundamental deterministic description. If all hidden variables are precisely known, then each probability $p\left(E_{\lambda}\right)$ should either be 0 or 1 . The probabilities of quantum measurements are obtained by averaging over unknown values of the hidden variables. It turns out that the hidden-variable theory violates the above assumption of Gleason's Theorem.
To see this, consider the nine two-qubit observables

$$
\begin{array}{lcc}
X \otimes \mathbb{I} & \mathbb{I} \otimes X & X \otimes X \\
\mathbb{I} \otimes Y & Y \otimes \mathbb{I} & Y \otimes Y \\
X \otimes Y & Y \otimes X & Z \otimes Z
\end{array}
$$

(a) Show that the observables in each row and in each column are mutually commuting, and find their common eigenstates. Thus, we obtain six different complete sets of one-dimensional projectors for two qubits.
(b) Each of the observables has eigenvalues ± 1. A hidden-variable theory would assign a definite value, either +1 or -1 to each observable. This deterministic assignment has to be consistent; e.g., the product of operators in the first row is the identity, which must be assigned +1 , therefore either all observables in the first row are assigned +1 , or two are assigned -1 and one +1 . This introduces 6 constraints on the assignments. Show that there is no way to satisfy all 6 constraints simultaneously.

Problem 1.6

Charlie prepares system A in one of two non-orthogonal states, $\left|\psi_{1}\right\rangle_{A}$ or $\left|\psi_{2}\right\rangle_{A}$, and challenges Alice to uncover information about which state he prepared without in any way disturbing the state. To meet the challenge, Alice prepares an ancillary system B in the state $|\phi\rangle_{B}$, and applies a unitary on the composite system acting as

$$
U: \begin{aligned}
& \left|\psi_{1}\right\rangle_{A} \otimes|\phi\rangle_{B} \rightarrow\left|\psi_{1}\right\rangle_{A} \otimes\left|\phi^{\prime}\right\rangle_{B} \\
& \left|\psi_{2}\right\rangle_{A} \otimes|\phi\rangle_{B} \rightarrow\left|\psi_{2}\right\rangle_{A} \otimes\left|\phi^{\prime \prime}\right\rangle_{B}
\end{aligned}
$$

which does indeed leave the state of system A undisturbed.
(a) Will Alice succeed in meeting the challenge?
[Hint: Use the unitarity of U to relate the states $\left|\phi^{\prime}\right\rangle_{B}$ and $\left|\phi^{\prime \prime}\right\rangle_{B}$]
(b) Can Alice succeed if the states $\left|\psi_{1}\right\rangle_{A}$ and $\left|\psi_{2}\right\rangle_{A}$ are, instead, orthogonal?

