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UNIT 1

Interactions

1.1 Scattering theory and the S-matrix

Until now, we have only considered free fields described by a Hamiltonian
H,, say, which we were able to diagonalize (found all eigenvalues and corre-
sponding eigenstates). We studied kinematics. To describe Nature, we need
to include interactions and study dynamics. This is usually a much harder
problem. The Hamiltonian is modified to

H=Hy,+ H; (1.1.1)

It is no longer possible to solve the eigenvalue problem except in very few
special cases (mostly in two spacetime dimensions). One usually resorts to
perturbation theory assuming H; is small. This does not answer deep ques-
tions, such as “what is a proton?” but does provide a method for some very
accurate calculations (e.g., the magnetic moment of the electron is known to
about 10 significant figures both theoretically and experimentally and they
agree!)
Experimental results are obtained primarily through scattering: two beams
collide and the products are observed at the detector. To compare with them,
we need to develop scattering theory. It turns out that scattering processes
hold all the information of quantum field theory.
In quantum mechanics, H; is usually represented by a potential. If it has
compact support, then at times ¢t — +oo, H = H,. Thus, we may define in-
coming and outgoing states which are eigenfunctions of H,. We shall attempt
to do the same in quantum field theory.
Consider a state |in) in the Hilbert space of the full Hamiltonian H. It evolves
in time as

e~ in) (1.1.2)

Ast — —oo, we expect H — Hj (no interactions), so asymptotically, our state
approaches a state in the Hilbert space of Hy. Call that state |in, 0). It evolves
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in time as

e Hot|in 0) (1.1.3)

The statement that this is asymptotic to |in) then amounts to

jin) = lim UT(t)[in,0) , U(t) = etiflote=itlt (1.1.4)

The operator U(t) maps a state in the Hilbert space of H to a state in the
Hilbert space of Hy. It is a unitary operator (provided H, H, are Hermitian). If
H and H, commute, then we may write U (t) = e~*r*. This is rarely the case.
In general, U () is a very complicated object.

Similarly, in the infinite future we may map

lout) = . ligl U'(t)|out, 0) (1.1.5)

where |out) (Jout, 0)) is in the Hilbert space of H (Hy).

We wish to calculate the amplitude of the general process
[in) — |out) (1.1.6)

and compare our results with experiment (experimentalists measure proba-
bilities, i.e., |(out|in)|?). The amplitude can be written as

(out|in) = (out,0[S|in,0) , S= lim Uty )U(t-) (1.1.7)

t+—too

where the S-matrix maps in-asymptotes to out-asymptotes. These two Hilbert
spaces may in general be distinct, but we shall not deal with such cases here.

S contains all the information of quantum field theory. It is an important
object to study.
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