Homework Set 5

due date: Wed., November 21, 2018

Show all your work for full credit.

Problem 5.1

The action for electromagnetism without charges is

$$
S=-\frac{1}{4} \int d^{4} x F_{\mu \nu} F^{\mu \nu} \quad, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

(a) Derive the Maxwell equations in terms of the electric ($E_{i}=F_{0 i}$) and magnetic ($B_{i}=\frac{1}{2} \epsilon_{i j k} F^{j k}$) fields.
(b) Construct the conserved energy-momentum tensor $T^{\mu \nu}$.
(c) Notice that $T^{\mu \nu}$ does not lead to the standard expressions for energy and momentum densities,

$$
\varepsilon=\frac{1}{2}\left(E^{2}+B^{2}\right) \quad, \quad \vec{S}=\vec{E} \times \vec{B}
$$

To remedy this, define the modified energy-momentum tensor

$$
\widehat{T}^{\mu \nu}=T^{\mu \nu}+\partial_{\lambda}\left(F^{\mu \lambda} A^{\nu}\right)
$$

Show that $\widehat{T}^{\mu \nu}$ is a symmetric and conserved tensor leading to the standard expressions for energy and momentum.

Problem 5.2

Consider a massive vector field whose Lagrangian density is given by

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} m^{2} A_{\mu} A^{\mu}
$$

The field equations may be written in the form

$$
\partial_{\mu} \partial^{\mu} A_{\nu}+m^{2} A_{\nu}=0
$$

together with the constraint

$$
\partial_{\mu} A^{\mu}=0
$$

(a) Show that the most general solution may be written in the form

$$
A_{\mu}=\int \frac{d^{3} k}{(2 \pi)^{3} \sqrt{2 \omega_{k}}} \sum_{r=1}^{3}\left\{a^{(r)}(\vec{k}) e_{\mu}^{(r)}(\vec{k}) e^{-i k \cdot x}+a^{(r) \dagger}(\vec{k}) e_{\mu}^{(r) *}(\vec{k}) e^{-k \cdot x}\right\}
$$

By normalizing the polarization vectors to

$$
e^{(r)}(\vec{p}) \cdot e^{(s) *}(\vec{p})=-\delta^{r s}
$$

show that they satisfy

$$
p \cdot e^{(r)}(\vec{p})=0, \quad \sum_{r=1}^{3} e_{\mu}^{(r)}(\vec{p}) e_{\nu}^{(s) *}(\vec{p})=A \eta_{\mu \nu}+B p_{\mu} p_{\nu}
$$

and find A and B.
(b) Expand the "electric field"

$$
\vec{E}=\partial_{0} \vec{A}-\vec{\nabla} A_{0}
$$

in modes. Show that the commutation relations

$$
\left[a^{(r)}(\vec{p}), a^{(s) \dagger}(\vec{p})\right]=\delta^{r s} \delta^{3}\left(\vec{p}-\vec{p}^{\prime}\right)
$$

lead to the equal-time commutators $(i, j=1,2,3)$

$$
\begin{gathered}
{\left[A_{i}(\vec{x}, t), E_{j}(\vec{y}, t)\right]=i \delta_{i j} \delta^{3}(\vec{x}-\vec{y})} \\
{\left[A_{i}(\vec{x}, t), A_{j}(\vec{y}, t)\right]=\left[E_{i}(\vec{x}, t), E_{j}(\vec{y}, t)\right]=0}
\end{gathered}
$$

(c) Show that the Hamiltonian density is given by

$$
\mathcal{H}=\frac{1}{2} \vec{E}^{2}+\frac{1}{2} \vec{B}^{2}+\frac{1}{2} m^{2} \vec{A}^{2}+\frac{1}{2 m^{2}}(\vec{\nabla} \cdot \vec{E})^{2}
$$

and write the Hamiltonian

$$
H=\int d^{3} x \mathcal{H}
$$

in terms of modes.
Problem 5.3
(a) Derive the Hamiltonian density

$$
\mathcal{H}=\frac{1}{2}\left(\vec{E}^{2}+\vec{B}^{2}\right)+\vec{A} \cdot \vec{J}
$$

for electromagnetism from the Lagrangian density

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-A_{\mu} J^{\mu}
$$

working in the axial gauge

$$
A_{3}=0
$$

Write \mathcal{H} explicitly in terms of two degrees of freedom.
(b) Show that in the Coulomb gauge,

$$
\vec{\nabla} \cdot \vec{A}=0
$$

the Lagrangian density leads to the Hamiltonian

$$
H=\int d^{3} x\left(\frac{1}{2} \vec{E}^{2}+\frac{1}{2} \vec{B}^{2}+\vec{J} \cdot \vec{A}\right)+\frac{1}{8 \pi} \int d^{3} x \int d^{3} y \frac{J^{0}(x) J^{0}(y)}{|\vec{x}-\vec{y}|}
$$

What is the physical meaning of the last term contributing to H ?

Problem 5.4

For a complex scalar field ϕ with Lagrangian density

$$
\mathcal{L}=\left(D_{\mu} \phi\right)^{*} D^{\mu} \phi-m^{2} \phi^{*} \phi
$$

show that the divergence of the stress-energy tensor

$$
T_{\mu}^{\nu}=D_{\mu} \phi\left(D^{\nu} \phi\right)^{*}+\left(D_{\mu} \phi\right)^{*} D^{\nu} \phi-\delta_{\mu}^{\nu}\left[\left(D_{\alpha} \phi\right)^{*} D^{\alpha} \phi-m^{2} \phi^{*} \phi\right]
$$

is given by

$$
\partial_{\nu} T_{\mu}^{\nu}=F_{\mu \nu} J^{\nu}
$$

Deduce the Lorentz force law

$$
\vec{F}=\frac{d \vec{P}}{d t}=\int d^{3} x(\rho \vec{E}+\vec{J} \times \vec{B})
$$

