Show all your work for full credit.

Problem 3.1

Consider a complex scalar field ψ with Lagrangian density

$$
\mathcal{L}=\partial_{\mu} \psi^{*} \partial^{\mu} \psi-\lambda\left(\psi^{*} \psi-\frac{v^{2}}{2}\right)^{2}
$$

(a) Show that the Lagrangian is symmetric under the $U(1)$ transformation

$$
\psi \rightarrow e^{i \theta} \psi
$$

and find the corresponding Noether current J^{μ} and charge Q.
(b) Express the field ϕ in terms of real fields ρ and σ as

$$
\psi=\frac{1}{\sqrt{2}} \rho e^{i \sigma}
$$

Find the conjugate momenta π_{ρ} and π_{σ} and express the Hamiltonian H and charge Q in terms of ρ, σ and their conjugate momenta.
(c) Define the ground state (vacuum) by

$$
H|0\rangle=0
$$

Explain why

$$
\langle 0| \rho|0\rangle=v
$$

(d) Using standard commutation rules

$$
\left[\rho(\vec{x}, t), \pi_{\rho}(\vec{y}, t)\right]=\left[\sigma(\vec{x}, t), \pi_{\sigma}(\vec{y}, t)\right]=i \delta^{3}(\vec{x}-\vec{y})
$$

calculate the commutators $[Q, H],[Q, \rho]$, and $[Q, \sigma]$.
Hence show that there exists a one-parameter set of ground states

$$
|\theta\rangle=e^{-i \theta Q}|0\rangle
$$

for which

$$
H|\theta\rangle=0, \quad\langle\theta| \rho|\theta\rangle=v, \quad\langle\theta| \sigma|\theta\rangle=\theta
$$

Problem 3.2

Consider the two-particle non-relativistic state

$$
|\Psi(t)\rangle=\int d^{3} x_{1} \int d^{3} x_{2} \Phi\left(\vec{x}_{1}, \vec{x}_{2} ; t\right)\left|\vec{x}_{1}, \vec{x}_{2}\right\rangle
$$

where

$$
\left|\vec{x}_{1}, \vec{x}_{2}\right\rangle=\psi^{\dagger}\left(\vec{x}_{1}\right) \psi^{\dagger}\left(\vec{x}_{2}\right)|0\rangle
$$

Show that this state obeys the Schrödinger equation

$$
i \frac{d}{d t}|\Psi(t)\rangle=H|\Psi(t)\rangle
$$

where

$$
H=-\frac{1}{2 m} \int d^{3} x \psi^{\dagger} \nabla^{2} \psi+\frac{1}{2} \int d^{3} x \int d^{3} x^{\prime} \psi^{\dagger}(\vec{x}) \psi^{\dagger}\left(\vec{x}^{\prime}\right) V\left(\vec{x}, \vec{x}^{\prime}\right) \psi\left(\vec{x}^{\prime}\right) \psi(\vec{x})
$$

if and only if the wavefunction $\Phi\left(\vec{x}_{1}, \vec{x}_{2} ; t\right)$ obeys the Schrödinger equation

$$
i \frac{\partial \Phi}{\partial t}=-\frac{1}{2 m}\left(\nabla_{x_{1}}^{2}+\nabla_{x_{2}}^{2}\right) \Phi+V\left(\vec{x}_{1}, \vec{x}_{2}\right) \Phi
$$

Problem 3.3

Consider a superfluid with contact interactions $\left(V\left(\vec{x}, \vec{x}^{\prime}\right)=g \delta^{3}\left(\vec{x}-\vec{x}^{\prime}\right)\right)$ governed by the Hamiltonian

$$
H=-\frac{1}{2 m} \int d^{3} x \psi^{\dagger} \nabla^{2} \psi+\frac{g}{2} \int d^{3} x\left[\psi^{\dagger}(\vec{x}) \psi(\vec{x})\right]^{2}
$$

(a) Using the Heisenberg equation

$$
\partial_{\tau} \mathcal{A}=[H-\mu N, \mathcal{A}], \quad N=\int d^{3} x \psi^{\dagger}(\vec{x}) \psi(\vec{x})
$$

calculate $\partial_{\tau} \psi$ and $\partial_{\tau} \psi^{\dagger}$.
(b) Express ψ in terms of real fields ρ and σ as

$$
\psi=\sqrt{\rho} e^{i \sigma}
$$

Deduce equations for σ and ρ and find the dispersion relations for these two fields.
(c) Vortex. Using cylindrical coordinates (r, ϕ, z), assume that

$$
\rho=f(r), \quad \sigma=\phi
$$

where $f(r) \rightarrow C$ away from the center of the vortex $(r \rightarrow \infty)$. Notice that there is no dependence on z.
Find an equation for $f(r)$ and solve it numerically (notice that $C=\mu / g$ - why?). Plot $f(r)$.
Can you find the approximate analytic form of $f(r)$ near the center $(r=0)$, and far away from it $(r \rightarrow \infty)$?

