Show all your work for full credit.

Problem 2.1

Find the Lorentz matrix Λ for a boost with velocity v in the x-direction and show that for $|v| \ll 1$,

$$
\phi(\Lambda x)=\phi(x)-v\left(t \partial_{x}+x \partial_{t}\right) \phi
$$

Show that the operator generating these boosts is

$$
M_{x}=-P_{x} t-\int d^{3} x x \mathcal{H}
$$

i.e.,

$$
\left[M_{x}, \phi\right]=-i\left(t \partial_{x}+x \partial_{t}\right) \phi
$$

For finite velocities, show that this exponentiates to

$$
U(\Lambda) \phi(x) U^{-1}(\Lambda)=\phi(\Lambda x), \quad U(\Lambda)=e^{i \zeta M_{x}}
$$

where ζ is the rapidity.

Problem 2.2

Show that the charge conjugation operator U_{C} commutes with the Hamiltonian and anti-commutes with the charge,

$$
\left[U_{C}, H\right]=0 \quad, \quad\left\{U_{C}, Q\right\}=0
$$

What does this imply about the action of charge conjugation on the eigenstates of H and Q ?
Problem 2.3
Find the Noether currents for the three boosts and the three rotations and calculate the commutators of the corresponding Noether charges.

Problem 2.4
Consider two complex scalar fields, $\phi_{a}(a=1,2)$, each of mass m.
(a) Show that there are four conserved charges,

$$
Q^{\mu}=\frac{i}{2} \int d^{3} x\left(\phi_{a}^{*}\left(\sigma^{\mu}\right)_{a b} \pi_{b}^{*}-\pi_{a}\left(\sigma^{\mu}\right)_{a b} \phi_{b}\right)
$$

where σ^{0} is the identity 2×2 matrix and σ^{i} are the three Pauli matrices. Find the transformation generated by each of the four charges and calculate the corresponding Noether currents.
(b) Show that the three charges Q^{i} obey the commutation relations of angular momentum.
(c) This system possesses two additional symmetries (total of six). Can you find them? What algebra do their commutators form?
[Hint: think of the fields ϕ_{a} as four free real fields.]

