Homework Set 1

due date: Fri., September 7, 2018
Problem 1.1
Using

$$
\mathcal{H}=\frac{1}{2} \pi^{2}+\frac{1}{2}(\vec{\nabla} \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}, \quad \overrightarrow{\mathcal{P}}=-\pi \vec{\nabla} \phi
$$

express the total four-momentum

$$
P_{\mu}=\int d^{3} x \mathcal{P}_{\mu}, \quad \mathcal{P}_{\mu}=(\mathcal{H}, \overrightarrow{\mathcal{P}})
$$

in terms of creation and annihilation operators.

Problem 1.2

Show that the measure

$$
d^{3} \Sigma_{k}=\frac{d^{3} k}{(2 \pi)^{3} 2 \omega_{k}}
$$

is invariant under a boost in the x-direction.
Explain (without a calculation) why $d^{3} \Sigma_{k}$ is invariant under rotations.
Problem 1.3
Calculate the inner product

$$
\langle\vec{x}, t \mid \vec{p}\rangle
$$

where $|\vec{x}, t\rangle=\phi(\vec{x}, t)|0\rangle$.

Problem 1.4

Show that the transformation property of creation operators under spacetime translations,

$$
e^{i P \cdot \lambda} a^{\dagger}(\vec{p}) e^{-i P \cdot \lambda}=e^{i p \cdot \lambda} a^{\dagger}(\vec{p})
$$

(where P_{μ} is the total four-momentum) implies the transformation law

$$
e^{i P \cdot \lambda} \phi(x) e^{-i P \cdot \lambda}=\phi(x+\lambda)
$$

Problem 1.5
Show that the state

$$
\left|\vec{p}_{1}, \ldots, \vec{p}_{N}\right\rangle=C a^{\dagger}\left(\vec{p}_{1}\right) \cdots a^{\dagger}\left(\vec{p}_{N}\right)|0\rangle
$$

is an eigenstate of the Hamiltonian H and total momentum \vec{P} and find the corresponding eigenvalues.

