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Abstract

This project paper is of two section. First section explains the
world line representation and how it helps in interpreting pair cre-
ation and annihilation. Second section deals with the derivation of
the amplitude for pair creation in vacuum in the special case of a one
dimensional external time dependent electric field using Schwinger
proper time method.



World line Representation in Explaining Pair

Creation

A world line is the spacetime line along which the point like particle
evolves. Through the use of an invariant relativistic quantity this world line
can be drawn. The squared spacetime length s2 is invariant in all frames of
reference. Using natural units ~ = c = 1, the spacetime length is defined as
follows

s2 = t2 − ~x2

and in differential form using Einstein notation with the metric diag(ηµν) =
(+ − − −)

ds2 = dxµdx
µ = ηµνdxµdxν (1)

where dxµ = (dx0, dx1, dx2, dx3) are the spacetime variables. Particularly,
since space like particles violates the speed limit c and light like particles are
massless, the quantity of choice for a particle with mass is the proper time τ of
the particle on a time like path (dxi = 0; i = 1, 2, 3); hence, ds2 = dτ 2 = dx20
and dτ = dx0. Physically, the proper time of a point like particle is the
shortest time for a particle to evolve from one state to another in its own
reference (“rest”) frame; thus, making it a useful physical parameter. We can
use the proper time (or an affinely transformed function of it) to parametrize
our coordinates xµ ≡ xµ(τ). Given the 4-momentum vector in the rest frame
of the particle with pµ = (m, 0, 0, 0)), and choosing an affine transform of the
proper time λ(τ) = τ/m, where m is the mass of the particle, the momentum
can be expressed in terms of the parametrized spacetime variables as

pµ =
dxµ(τ)

dλ
. (2)

dividing equation (1) by dλ2 we obtain(
dτ

dλ

)2

=
dxµ
dλ

dxµ

dλ
= pµp

µ = m2 (3)

Now, we can see that(
dτ

dλ

)2

= m2 dτ = ±mdλ (4)
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This parametrization was employed by [Stückelberg 1941a]; he explained
the signs ± in equation (4) as a representation of the charge of the particle.
Stückelberg’s reasoning is that, on its world line, a charged particle forwardly
evolving, (dx0/dλ) > 0, can be interpreted as a particle with opposite charge
(antiparticle) backwardly evolving, (dx0/dλ) < 0. In turn, this representa-
tion is used to explain pair creation and annihilation. In Figure 1, one can
see a plot presenting three possible world lines (A, B and C) when a one
dimensional electric field is applied for a short period of time δt = t2 − t1.
This figure shows that around t = 0 when an electric field is applied, a

Figure 1: [Stückelberg 1941b] the world lines A, B and C on a plot
of time t = x4 vs. x1, where λ ≡ λ(τ) is an affine parameter that
depends on the proper time τ . A: The regular 1-1 graph that is for
every x4 there is one x1. B: represents the annihilation of a particle
in which there are two values for x1 for each value x4 for x4 < 0. C:
represents the creation of a particle in which there are two values for
x1 for each value x4 for x4 > 0.

charged particle can be accelerated on its world line A. It can be annihilated
(accelerated backwards, deflected) on its world line B, which can be seen as
an antiparticle, that started at λ = ∞ and annahilated the particle at time
t = 0 by traveling backwards along its world line. Another option is of a
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particle-antiparticle pair being created on world line C, with the antiparticle
traveling backwards (against the arrow) and the particle traveling forwards
(along the arrow) on the world line.
This idea was further explained by Feynman using the a picture of paths of

Figure 2: [Feynman 1948] This is a plot of time t vs position x with a
potential barrier (shaded region). Two paths are drawn from starting
point À to end point Á that describe the electrons journey across
the barrier. The dotted path is for the energetically weak electron
annihilated at point P due to a positron created from an electron-
positron pair at point Q and traveled along the line QP while the
electron produced at Q gets detected at point Á. The solid path is
that of an energetic electron that experienced deflection due to the
potential.

an electron [Feynman 1948]. In Figure 2, one can see two possible paths an
electron can take passing a potential barrier starting at point À and detected
at point Á. The paths depend on the energy of the electron; the solid path
is what an energetic electron can take with a deflection when it passes the
barrier and reaches point Á. Another path is the one when the weak electron
starting at À gets annihilated at point P by a positron produced from an
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electron-positron pair created at point Q with the created electron getting
detected at (2).

This world line picture and the path integral machinery were tools that
lead [Feynman 1950] and [Schwinger 1951] to obtain the quantum electrody-
namics effective action. This action was used to calculate the corrections to
the Maxwell Lagrangian via multi-loop correction method in a first quan-
tization formulation. These corrections, celebrated in [Dunne 2012], were
derived analytically by Heisenberg and Euler who reached the full effective
action that can be used for vacuum polarization discussed in the following
section.

Derivation of the Amplitude for Pair Produc-

tion in Vacuum in an External Electric Field

Vacuum in a constant external electric field results in the creation (and
annihilation) of virtual electrons and positrons, i.e. e−e+ pair production;
hence, the vacuum is said to be polarized. To be able to theoretically calcu-
late the amplitude of this production one needs to consider the perturbative
effect of the electric field on the vacuum. We will follow the derivation found
in [Dittrich et al. 1985] and [Dittrich et al. 2000] that uses the proper time
method introduced by [Schwinger 1951]. Only considering up to one-loop
correction, the Lagrangian density (onwards Lagrangian) will be formed of
two parts:

L = L(0) + L(1) (5)

where L(0) is the classical Maxwell Lagrangian with no corrections, and L(1)

is the one-loop correction, i.e. perturbation, which neglects radiative correc-
tions. Now, we will focus on the one-loop Lagrangian L(1).

For a vacuum state |0〉 prepared in the past at time t→ −∞, |0, t = −∞〉,
the probability amplitude of the vacuum state to remain in the ground state
when no electric field is applied, Aµ = 0,

〈0, t = +∞|0, t = −∞〉A=0 ≡ 〈0+|0−〉A=0
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i.e. no pair production, is | 〈0+|0−〉A=0 |2 = 1. Nevertheless, when there is an
electromagnetic field present, with electromagnetic Aµ 6= 0, the amplitude

will not be equal to unity, | 〈0+|0−〉A |2 6= 1, since pair production will occur.
We can find that the amplitude is related to the effective action as follows:

〈0+|0−〉A = eiW
(1)[A] (6)

whereW (1)[A] is the effective action of the one-loop correction. Using Schwinger
action principle as described by [Toms 2007], we can obtain

W (1)[A] =

∫
d4xL(1)(x) (7)

We can then calculate the probability amplitude for pair production which
would be equal to 1− | 〈0+|0−〉A |2.

In order to work with fermions, we will need to work with Dirac field ψ,
where ψ̄ = ψ†γo, and γµ are the 4× 4 Dirac matrices (as stated in the course
notes). The expectation value of the current (source) jµ can be obtained via
the functional derivative of the effective action with respect to the vector
potential

δW (1)[A]

δAµ(x)
= 〈0|jµ(x)|0〉A (8)

where the symmetrized current (normal ordered) is defined as

jµ =
e

2
[ψ̄, γµψ] =

e

2
:ψ̄γµψ: (9)

with e taken as the charge of the fermion.
Now, the aim is to solve equation (8) to find an expression for the effective
action W (1)[A] and in turn the one-loop Lagrangian correction L(1), using
the proper time method. We note that “Charge symmetrization translates
into a time symmetrization [i.e. time ordering]” [Dittrich et al. 2000]. This
is how Stückelberg’s reasoning is used in this derivation.

δW (1)[A]

δAµ(x)
= 〈0|jµ(x)|0〉A = −e lim

x′→x
γµ 〈0|T

(
ψ(x′)ψ̄(x)

)
|0〉

= ie trγ [γµG(x, x|A)]

(10)

where T is our time ordering operator and trγ means the trace of the spinor
index. G(x, x|A) is the Green function. G(x, x′|A) is a function of the initial
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and final spacetime variables xµ(τ) and x′µ(τ), respectively, in an external
electromagnetic field Aµ(x). The Green function should satisfy the Dirac
field equation

(−iγµDµ +m)G(x, x′|A) = δ(x− x′) (11)

where Dµ = ∂µ + ieAµ. In momentum (phase) space we can write(
−iγµD̃µ +m

)
G[A] = 1 (12)

where D̃µ = pµ + ieAµ. From (12) we can formulate this Green function
using the proper time method

G[A] =
1

m− iγµD̃µ

=

(
m+ iγµD̃µ

)
(
m− iγµD̃µ

)(
m+ iγµD̃µ

) =

(
m+ iγµD̃µ

)
m2 +

(
γµD̃µ

)2
=
(
m+ iγµD̃µ

)
i

∞∫
0

dτe
−iτ

[
m2+(γµD̃µ)

2
] (13)

The last step was achieved using the identity shown in [de Albuquerque et al. 1998]

X−1 = i

∞∫
0

dτe−iτX (14)

where τ is the proper time on which the 4-spacetime variables depend, xµ(τ).

Therefore we need to find W (1)[A] that will satisfy equation (10)

δW (1)[A]

δAµ(x)
= ie trγ [γµG(x, x|A)] .

An ansatz that will fulfill the requirement is,

W (1)[A] =

∫
d4xL(1)(x) =

∫
d4x

−1

2

∞∫
0

dτ

τ
e−iτm

2

trx,γ

[
e−iτ(γ

µD̃µ)
2]

(15)
where trx,γ is the trace of the gamma index and position in momentum
space. Equation (15) is well defined as τ → ∞; however, as τ → 0 a
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cutoff τo is introduced in order to perform the integration. The logic be-
hind this is that after integrating, unphysical quantities appearing are re-
moved and afterwards by applying the limits τo → 0 the surviving physical
quantities do not diverge. Hence, our expression is said to be renormalized
[de Albuquerque et al. 1998].

Before we test the validity of the ansatz, let us list some functional deriva-
tive rules which will be useful. For a functional F [Q(x)] [Dittrich et al. 2001]:

(a) Given an arbitrary function f(x)

F [Q(x)] =

∫
dxQ(x)f(x)

δF [Q(x)]

δQ(y)
= f(y), Noting that:

δQ(x)

δQ(y)
= δ(x− y)

(16)

(b) For an exponential single integral

F [Q(x)] = exp

[∫
dxQ(x)f(x)

]
δF [Q(x)]

δQ(y)
= f(y)exp

[∫
dxQ(x)f(x)

] (17)

(c) For an exponential double integral

F [Q(x)] = exp

[∫
dx dx′Q(x)f(x, x′)Q(x′)

]
δF [Q(x)]

δQ(y)
=

[∫
dx′ f(y, x′)Q(x′) +

∫
dxQ(x)f(x, y)

]
F [Q(x)]

(18)

We can see that δD̃α(x) = ieδAα(x) by using the chain rule

δ

δAα(x)
=
δD̃α(x)

δAα(x)

δ

δD̃α(x)
= ie

δ

δD̃α(x)
.
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Therefore, by using equation (15) in equation (10)

δW (1)[A(y)]

δAα(x)
= ie

δW (1)[A(y)]

δD̃α(x)

=
−ie
2

∞∫
0

dτ

τ
e−iτm

2 δ

δD̃α(x)
trx,γ

[∫
d4y exp

(
−iτ

(
γµD̃

µ(y)γνD̃
ν(y)

))]

=
−ie
2

∞∫
0

dτ

τ
e−iτm

2

× trx,γ

∫ d4y(−iτ)γµγν
δ
(
D̃µ(y)D̃ν(y)

)
δD̃α(x)

e−iτ(γµD̃
µ(y)γνD̃ν(y))


where

δ
(
D̃µ(y)D̃ν(y)

)
δD̃α(x)

= δµαδ(x− y)D̃ν(y) + δναδ(x− y)D̃µ(y)

Hence,

δW (1)[A(y)]

δAα(x)

=
ie

2

∞∫
0

dτ i e−iτm
2

× trx,γ

[∫
d4yγµγν

(
δµαδ(x− y)D̃ν(y) + δναδ(x− y)D̃µ(y)

)
e−iτ(γµD̃

µ(y)γνD̃ν(y))
]

=
ie

2

∞∫
0

dτ i e−iτm
2

trx,γ

[(
γαγνD̃

ν(x) + γµD̃
µ(x)γα

)
e−iτ(γµD̃

µ(x)γνD̃ν(x))
]

Now, we will swap the indices ν ↔ µ and group the terms to reach the form
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of equation (13)

δW (1)[A(y)]

δAα(x)

=
ie

2

∞∫
0

dτ i e−iτm
2

trγ

[
γα 〈x|

(
γµD̃

µ(x) + γµD̃
µ(x)

)
e−iτ(γ

µD̃µ)
2

|x〉
]

= ie

∞∫
0

dτ i e−iτm
2

trγ

[
γα 〈x|γµD̃µ(x)e−iτ(γ

µD̃µ)
2

|x〉
]

using the γ matrices property, tr [γµγνγρ...] = 0 for odd numbers of γ matrices,

we can rewrite the equation with an added term

= ie trγ

γα 〈x|(m+ γµD̃
µ(x)

)
i

∞∫
0

dτe
−iτ

(
m2+(γµD̃µ)

2
)
|x〉


= ie trγ [γαG(x, x|A)]

Therefore, the ansatz (15) satisfies equation (10) and we can write the one-
loop correction of the Lagrangian

L(1)(x) = −1

2

∞∫
0

dτ

τ
e−iτm

2

trγ

[
〈x|e−iτ(γµD̃µ)

2

|x〉
]

(19)

and using [Schwinger 1951] interpretation, we will define the coordinate rep-
resentation of the proper time evolution operator as the transformation am-
plitude

K(x, x′; τ |A) = 〈x|e−iτ(γµD̃µ)
2

|x〉 . (20)

Using the path integral formulation, we can solve the functional integral

K(x′, x′′; τ |A) = 〈x′, τ |x′′, 0〉 =

x(τ)=x′∫
x(0)=x′′

Dx(τ)eiS[x(τ)]. (21)

However, for the simple case of one dimensional electric field there is a sim-
pler way following [Itzykson et al. 1980].
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The evolution operator interpreted by Schwinger in coordinate space as equa-
tion (20) has the form in momentum space as

U(τ) = e−iτH (22)

where H is the Hamiltonian. Before writing the Hamiltonian we will need
some tools in order to present it in a neat form. Using the following anti-
commutation { , } and commutation [ , ] relations

{γµ, γν} = 2ηµν14×4

σµν =
i

4
[γµ, γν ]

Fµν =
i

e
[Dµ, Dν ]

(23)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic tensor, we can write the
multiplication of two gamma matrices as follows

γµγν =
1

2
γµγν +

1

2
γµγν +

1

2
γνγµ − 1

2
γνγµ

=
1

2
(γµγν + γνγµ) +

1

2
(γµγν − γνγµ)

=
1

2
{γµ, γν}+

1

2
[γµ, γν ]

= ηµν14×4 +
2

i
σµν .

(24)

Therefore, we can now write (γµDµ)2 explicitly

(γµDµ)2 = γµDµγ
νDν = γµγνDµDν

using equation (24) = (ηµν14×4 − 2iσµν)
(e
i
Fµν +DνDµ

)
since Fµν is antisymmetric = D214×4 − 2eσµνFµν

& DνDµ is symmetric = D2 − 2eσµνFµν

(25)

Therefore we can write the Hamiltonian of equation (22) using the expression
obtained in (25) in momentum space

H =
(
γµD̃µ

)2
= D̃2 − 2eσµνFµν (26)
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In the case of pure one dimensional time dependent electric field along the
x3 axis choosing our gauge considered is A0 = A1 = A2 = 0 and A3 = E3x0,
then

−2eσµνFµν = −2eσ0 3F0 3 = −2e
i

4

[
γ0, γ3

]
∂0A3 = −e i

2

[
γ0, γ3

]
E3 (27)

Therefore, we can calculate the trace of the exponential of the second term
in the Hamiltonian (26). First the gamma commutation, where σi are the
Pauli matrices (as stated in the course notes)[

γ0, γ3
]

= γ0γ3 − γ3, γ0

=

(
0 σ0
σ0 0

)(
0 σ3
−σ3 0

)
−
(

0 σ3
−σ3 0

)(
0 σ0
σ0 0

)
=

(
−σ3 0

0 σ3

)
−
(
σ3 0
0 −σ3

)
= 2

(
−σ3 0

0 σ3

)
(28)

Now obtaining the trace

trγ

[
exp

(
iτe

i

2

[
γ0, γ3

]
E3

)]
= trγ

e−eτ
−σ3 0

0 σ3

E3


= eeτσ3E3 + e−eτσ3E3 = 2eeτE3 + 2e−eτE3 = 4 cosh (τeE3)

(29)

What is left is the trace of the first term of the Hamiltonian (26) and accord-
ing to [Itzykson et al. 1980] by reshuffling and then using correspondence to
the harmonic oscillator’s evolution operator, we obtain

tr
[
e−iτD̃

2
]

= tr
[
e−iτ(pµ+ieAµ)

2
]

=
eE3

τ (2π)2 sinh (τeE3)
(30)

Therefore our transformation amplitude will equal to

K(x′, x′′; τ |A) = 〈x′, τ |x′′, 0〉 = tr
[
exp

(
−iτD̃2 + 2ieσµνFµν

)]
=

4eE3 cosh (τeE3)

τ (2π)2 sinh (τeE3)
=

1

τ (2π)2
eE3 coth (τeE3)

(31)
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and our one-loop correction Lagrangian

L(1)(x) = − 1

8π2

∞∫
0

dτ

τ 2
e−iτm

2

eE3 coth (τeE3) (32)

We need to check that if E3 = 0 the L(1)(x) should equal to zero

L(1)(E3 = 0) = − 1

8π2

∞∫
0

dτ

τ 2
e−iτm

2 6= 0 (33)

Therefore, we need to subtract this value from (34) and therefore our one-
loop lagrangian correction is equal to

L(1)(x) = − 1

8π2

∞∫
0

dτ

τ 2
e−iτm

2

[eE3 coth (τeE3)− 1] (34)

and the amplitude for pair production will equal to

1− | 〈0+|0−〉A |2 = 1−
∣∣∣eiW (1)[A]

∣∣∣2 = 1−
∣∣∣ei ∫ d4xL(1)(x)∣∣∣2

= 1−

∣∣∣∣∣∣exp

− i

8π2

∫
d4x

∞∫
0

dτ

τ 2
e−iτm

2

[eE3 coth (τeE3)− 1]


∣∣∣∣∣∣
2

(35)

Finally, our corrected Lagrangian (5), with the classic Maxwell Lagrangian
for a one dimensional electric field L(0) = −1

4
FµνF

µν = 1
2
E2

3 , will equal to

L = L(0) + L(1) =
1

2
E2

3 −
1

8π2

∞∫
0

dτ

τ 2
e−iτm

2

[eE3 coth (τeE3)− 1] (36)

Endnotes

We have shown how the world line representation can interpret pair pro-
duction. The proper time presentation is said to be of popular use in String
theory in which the concept is extended from world lines to world sheets (or
graphs). We have derived the amplitude for pair production using Schwinger
proper time method which preserves gauge invariance and in our case offered
a method of obtaining the Maxwell Lagrangian perturbative terms using
one-loop approximation for the case of a one dimensional electric field.
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