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Ginzburg-Landau Theory of Phase Transitions

1 Phase Transitions

A phase transition is said to happen when a system changes its phase. The physical property

that characterizes the difference between two phases is known as an order parameter. Two

familiar examples of phase transitions are transitions from ice to water and paramagnet to

ferromagnet. There are two types of phase transitions: first order and second order. The first

order phase transitions are characterized by a discontinuous change in thermodynamic

variables. An example of this would be transition from solid to liquid in crystals. In this case,

the order parameter would be the Fourier component of charge density.

In the second order phase transitions, the thermodynamic variables change

continuously, but a kink occurs at the transition point. The absence of discontinuity in the

order parameter implies that two phases can coexist at the point of transition. In the phase

diagram, this point is called a critical point. A second order liquid-gas transition occurs in

water at around 647 K and 22 MPa.

Another example of second order phase transition is given by ferromagnets. At low

temperature, the system has some magnetisation M along some axis even at zero external

field. The direction of the magnetization can be changed discontinuously by applying some

non-zero external field in the direction opposite to the magnetization. If the temperature is

increased, the fluctuation of spins will increase and the magnitude of magnetization decreases.

As the temperature is further increased to some critical temperature TC , the magnetization

vanishes and the second-order transition occurs. This temperature is called the critical point

of the system in H − T plane.

When a system undergoes a phase transition, it usually loses some sysmmetry. For
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example, in the cases of paramagnet-ferromagnet and liquid-solid transitions, the systems lose

rotational symmetry. We know from our recent discussions in class that spontaneous

symmetry breaking requires existence of massless boson. The bosons are magnons in

ferromagnets and phonons in crystals.

2 Critical Exponents

It is experimentally found that for temperature below TC the magnetization |M | ∝ (TC − T )β

with β ≈ 0.37 for three dimensional ferromagnets. Similar behaviour is found in other

thermodynamic quantities near TC . The magnetization goes to zero with the relation

M ∝ H−δ as H → 0. The susceptibility diverges as χ ∝ (T − TC)γ at the critical point.

3 Ginzburg-Landau Theory

In general, to study various properties of a system, we need to calculate the partition function

Z = tr exp(−H/kT ), where H, k and T are the Hamiltonian, Boltzmann constant and

temperature, respectively . With the partition function we can calculate othe thermodynamic

quantities; for example, magnetization at constant volume and magnetic field M = kT ∂Z
∂B

.

Computing the infinite sum in calculating the trace is a formidable task for a non-trivial

system, but an approximation by a finite sum also brings a subtle but devastating problem.

The term exp(−H/kT ) is assumed to be a smooth function of its variables, except possibly at

the extreme values of its variables. Then finite sum of such terms would also be a smooth

function. Hence, such an approximation cannot describe phase transitions and critical

phenomena. Obviously, infinite sums of smooth functions in some variables need not be

analytic in those variables and if we could calculate the infinte sum, we could calculate various

properties of the system easily.

Ginzburg and Landau got around the problem of having to calculate the inifinite sum

with a brilliant insight. They argued that the form of the free energy of a system in terms of

its order parameter could be guessed from the symmetries the system obeyed. Let ψ be the
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order parameter, which is in general a complex field. Then, for a homogenous system, the free

energy can be written as

F (T ) = F0 + a(T )|ψ|2 +
1

2
b(T )|ψ|4 + · · · ,

where F0 is a constant and a, b are parameters that depend on temperature T . If the system is

inhomogenous, we need to also include the term ~2

2m
|∇ψ|2, where m is the effective mass of the

particle comprising the system. In the case of electrons in a magnetic field, we need to include

the term ~2

2m

∣

∣

(

1
i
∇ + 2eA

)

ψ
∣

∣

2
, where e is the charge of an electron.

Usually, we truncate the series after the term |ψ|4. Then b(T ) must always be positive

since, otherwise, there would be no minimum of the free energy. When we plot F (T ) − F0, we

see that there are two possible posibilities. In the case of a(T ) > 0, the curve has one

minimum at ψ = 0. However, if a(T ) < 0, there are minima whenever |ψ|2 = −a(T )/b(T ).

Ginzburg and Landau assumed that a(T ) > 0 above the transition temperature Tc. In this

case there is a minimum when the order parameter vanishes. But if a(T ) decreases as T

decreases and becomes negative below Tc, then minimum of the free energy is at ψ 6= 0. Thus,

this theory describes systems that undergo phase transitions.

4 Ginzburg-Landau Theory of Ferromagnetism

In the case of a ferromagnet, the order parameter is the magnetization M . As the direction of

magnetization “up” or “down” does not make any difference to the free energy, we can write

down free energy as prescribed by Ginzburg and Landau:

F = F0 + a(T )M2 +
1

2
b(T )M4.

Let b be a constant. To facilitate the change of sign in a(T ) at Tc, let us assume

a(T ) = a0(T − Tc), where a0 is a positive constant. To find the ground state, we need to

minimize the free energy with respect to M . This gives us the condition

2M [a0(T − Tc) + bM2] = 0.
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This implies either M = 0 or M = ±[a0(Tc−T )
b

]
1

2 . However, the second condition is valid only

when T < Tc, since we cannot take the square root of a negative number. Thus, magnetization

is zero for T ≥ 0 and it is non-zero for T < Tc and is proportional to (Tc − T )
1

2 .

5 Ginzburg-Landau Theory of Superconductivity

Ginzburg and Landau assumed that a superconducting state is characterized by a complex

order parameter ψ = |ψ|eiθ. Then free energy density can be written as

fs(T ) = fn(T ) + a0(T − Tc)|ψ|2 +
b

2
|ψ|4,

where fs(T ) and fn(T ) are the superconducting and normal state free energy densities,

respectively. An analysis similar to above case of ferromagnetism will show the free energy

density has a minimum at |ψ| = 0 when T > Tc. Below Tc we will find the minima whenever

|ψ| = (a0
b
)

1

2 (Tc − T )
1

2 . This implies that there are infinite set of minima corresponding to all

possible values of complex phase θ.

We can also find the minimum value of the free energy density, which corresponds to

the condensation energy of the superconductor:

fs(T ) − fn(T ) = −a
2
0(T − Tc)

2

2b
= −µ0

H2
c

2
.

Hence, the critical field near Tc above which superconductivity is destroyed is given by

Hc = a0

(µ0b)
1

2

(Tc − T ).

From the experiments, it turns out that electrons in the superconducting state are not

distributed homogeneously inside the sample. So let us consider the expansion of the free

energy density in an inhomogeneous system

fs(T ) = fn(T ) +
~

2

2m
|∇ψ|2 + a(T )|ψ|2 +

b

2
|ψ|4.

Here we have suppressed the r dependence of ψ(r). To find ψ corresponding to the minimum,

we must minimize the total free energy of the system

Fs(T ) = Fn(T ) +

∫
(

~
2

2m
|∇ψ|2 + a(T )|ψ|2 +

b

2
|ψ|4

)

d3r.
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Minimization of Fs with respect to ψ and ψ∗ yields the condition

− ~
2

2m
∇2ψ + aψ + bψ|ψ2| = 0.

For simplicity, we consider a one dimensional interface between a normal metal and a

superconductor. Let us assume the interface is along x direction, i.e. for x < 0 we find normal

metal and for x > 0 we find superconductor. Then the solution of previous equation is given by

ψ(x) = ψ0 tanh

(

x√
2ξ(T )

)

,

where ψ0 is the value of the order parameter in the bulk far from the surface and ξ is the

coherence length defined by ξ =
(

~
2

2m|a(T )|

)
1

2

. Since ξ is in the denominator of the argument of

the function tanh, it is a measure of the distance from the surface over which the order

parameter has recovered back to nearly its bulk value. Using the relation a = a0(T − Tc), we

can rewrite ξ(T ) = ξ(0)|t|− 1

2 , where t = T−Tc

Tc

is called the reduced temperature. We can see

that ξ(T ) diverges at the critical temperature Tc with a critical expononet of 1
2
.

We can study the behaviour of a superconductor in a magnetic field by considering the

following expansion for free energy density

fs(T ) = fn(T ) +
~

2

2m

∣

∣

∣

∣

(

~

i
+ 2eA

)

ψ

∣

∣

∣

∣

2

+ a(T )|ψ| + b

2
|ψ|4 +

1

2µ0
B2,

where A is the vector potential such that B = ∇× A. The total energy is given by

Fs(T ) = Fn(T ) +

∫

(

~
2

2m

∣

∣

∣

∣

(

~

i
+ 2eA

)

ψ

∣

∣

∣

∣

2

+ a(T )|ψ| + b

2
|ψ|4 +

1

2µ0
B2

)

d3r

Minimizing the total energy with respect to A, we find

∇×B = µ0j

with

j = −2ehi

2m
(ψ∗∇ψ − ψ∇ψ∗) − (2e)2

m
|ψ|2A.

Now consider the superconductor under a very weak field. When the field is zero we already

know that ψ ≈ ψ0 in the bulk of the superconductor. So in the case of weak field we can keep

only the leading term such that

j = −(2e)2

m
ψ2

0A.
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Taking the cross product, we get,

∇×∇× B = −µ0(2e)
2

m
ψ2

0B = − 1

λ2
B,

where λ =
(

m
4µ0e2ψ2

0

)

is defined as the penetration depth. The purpose of this naming becomes

clear if we consider a field B = (0, 0, Bz(x)). Then the solution of the previous equation is

B = B0e
(−x/λ). Thus the penetration depth defines the distance inside the surface of the

superconductor beyond which the external magnetic field is screened out to zero. This

screening is verified experimentally.

6 Conclusions

A phase transition is said to happen when a system changes its phase. Two examples of this

phenomena are transition from paramagnet to ferromagnet and normal metal to

superconductor. Ginzburg and Landau had a brilliant insight to express the free energy in

terms of the order parameter. We can then study various properties of the system by

minimizing the free energy and solving the resulting equations. The Ginzburg-Landau theory

is able to describe many macroscopic properties of systems that undergo phase transitions;

however, this theory does not give a microscopic explanation.
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