PHYSICS 522 - SPRING 2011

Midterm Exam II - Solutions

Problem 1

(a) There are $2 \times 4=8$ states in this system, $\left|m_{1} m_{2}\right\rangle$, with $m_{1}= \pm \frac{1}{2}, m_{2}= \pm \frac{3}{2}, \pm \frac{1}{2}$.

Let $\vec{S}=\vec{S}_{1}+\vec{S}_{2}$ be the total spin. Then

$$
H=\frac{a}{2}\left[\vec{S}^{2}-\vec{S}_{1}^{2}-\vec{S}_{2}^{2}\right]
$$

Evidently, the eigenstates are $|S M\rangle$ with corresponding eigenvalues

$$
E_{S}=\frac{a \hbar^{2}}{2}\left[S(S+1)-\frac{9}{2}\right], \quad S=1,2
$$

of degeneracies $2 S+1$ (Check: $3+5=8$).
(b) Using the standard procedure to switch from the $|S M\rangle$ basis to the $\left|m_{1} m_{2}\right\rangle$ basis, we obtain

$$
\begin{aligned}
|22\rangle & =\left|\frac{1}{2} \frac{3}{2}\right\rangle \\
|21\rangle & =\frac{1}{2}\left|-\frac{1}{2} \frac{3}{2}\right\rangle+\frac{\sqrt{3}}{2}\left|\frac{1}{2} \frac{1}{2}\right\rangle \\
|20\rangle & =\frac{1}{\sqrt{2}}\left[\left|-\frac{1}{2} \frac{1}{2}\right\rangle+\left|\frac{1}{2}-\frac{1}{2}\right\rangle\right] \\
|2-1\rangle & =\frac{1}{2}\left|\frac{1}{2}-\frac{3}{2}\right\rangle+\frac{\sqrt{3}}{2}\left|-\frac{1}{2}-\frac{1}{2}\right\rangle \\
|2-2\rangle & =\left|-\frac{1}{2}-\frac{3}{2}\right\rangle \\
|11\rangle & =-\frac{1}{2}\left|\frac{1}{2} \frac{1}{2}\right\rangle+\frac{\sqrt{3}}{2}\left|-\frac{1}{2} \frac{3}{2}\right\rangle \\
|10\rangle & =\frac{1}{\sqrt{2}}\left[\left|-\frac{1}{2} \frac{1}{2}\right\rangle-\left|\frac{1}{2}-\frac{1}{2}\right\rangle\right] \\
|1-1\rangle & =\frac{1}{2}\left|-\frac{1}{2}-\frac{1}{2}\right\rangle-\frac{\sqrt{3}}{2}\left|\frac{1}{2}-\frac{3}{2}\right\rangle
\end{aligned}
$$

Problem 2

(a) We have

$$
0=\operatorname{det}(H-E \mathbb{I})=E^{2}-\left(E_{1}+E_{2}\right) E-\lambda^{2}+E_{1} E_{2}
$$

therefore

$$
E=E_{ \pm}=\frac{1}{2}\left[E_{1}+E_{2} \pm \sqrt{\left(E_{1}-E_{2}\right)^{2}+4 \lambda^{2}}\right]
$$

The corresponding normalized eigenvectors are
(b) From perturbation theory,

$$
\delta E_{1}=\lambda\langle 1| W|1\rangle+\lambda^{2} \frac{|\langle 2| W| 1\rangle\left.\right|^{2}}{E_{1}-E_{2}}+\ldots
$$

We have

$$
\langle 1| W|1\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=0
$$

showing that the first-order correction vanishes, and

$$
\langle 2| W|1\rangle=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=1
$$

Therefore

$$
\delta E_{1}=\frac{\lambda^{2}}{E_{1}-E_{2}}+\ldots
$$

to be compared with

$$
\begin{aligned}
E_{-}-E_{1} & =\frac{1}{2}\left[E_{2}-E_{1}-\sqrt{\left(E_{2}-E_{1}\right)^{2}+4 \lambda^{2}}\right] \\
& =\frac{E_{2}-E_{1}}{2}\left[1-\sqrt{1+\frac{4 \lambda^{2}}{\left(E_{2}-E_{1}\right)^{2}}}\right] \\
& =-\frac{\lambda^{2}}{E_{2}-E_{1}}+\ldots
\end{aligned}
$$

They agree to order λ^{2}.
The corresponding eigenvector is

$$
\left|1^{\prime}\right\rangle=|1\rangle+\lambda \frac{\langle 2| W|1\rangle}{E_{1}-E_{2}}|2\rangle+\ldots=|1\rangle+\frac{\lambda}{E_{1}-E_{2}}|2\rangle+\ldots=\binom{1}{\frac{\lambda}{E_{1}-E_{2}}}+\ldots
$$

to be compared with

They agree to order λ.
Similarly,

$$
\delta E_{2}=\lambda\langle 2| W|2\rangle+\lambda^{2} \frac{|\langle 1| W| 2\rangle\left.\right|^{2}}{E_{1}-E_{2}}+\ldots=\frac{\lambda^{2}}{E_{2}-E_{1}}+\ldots
$$

in agreement with

$$
E_{+}-E_{2}=\frac{\lambda^{2}}{E_{2}-E_{1}}+\ldots
$$

and the corresponding eigenvector

$$
\left|2^{\prime}\right\rangle=|2\rangle+\lambda \frac{\langle 1| W|2\rangle}{E_{2}-E_{1}}|1\rangle+\ldots=|2\rangle+\frac{\lambda}{E_{2}-E_{1}}|1\rangle+\ldots=\binom{\frac{\lambda}{E_{2}-E_{1}}}{1}+\ldots
$$

in agreement with

Problem 3

We have

$$
\langle\alpha| H|\alpha\rangle=2 \int_{0}^{\infty} d x\left[\frac{\hbar^{2}}{2 m}{\phi_{\alpha}^{\prime}}^{2}+V \phi_{a}^{2}\right]=2 \int_{0}^{\alpha} d x\left[\frac{\hbar^{2}}{2 m}+g x(\alpha-x)^{2}\right]=\frac{\hbar^{2}}{m} \alpha+\frac{1}{6} g \alpha^{4}
$$

where we used $\int_{-\infty}^{+\infty}=2 \int_{0}^{\infty}$, because all functions are even.
Also,

$$
\langle\alpha \mid \alpha\rangle=2 \int_{0}^{\infty} d x \phi_{\alpha}^{2}=2 \int_{0}^{\alpha} d x(\alpha-x)^{2}=\frac{2}{3} \alpha^{3}
$$

so

$$
\langle H\rangle=\frac{\langle\alpha| H|\alpha\rangle}{\langle\alpha \mid \alpha\rangle}=\frac{3 \hbar^{2}}{2 m \alpha^{2}}+\frac{g \alpha}{4}
$$

This is minimized when

$$
0=\frac{d\langle H\rangle}{d \alpha}=-\frac{3 \hbar^{2}}{m \alpha^{3}}+\frac{g}{4}
$$

which gives

$$
\alpha=\left(\frac{12 \hbar^{2}}{m g}\right)^{1 / 3}
$$

and

$$
E_{0}=\frac{3^{4 / 3}}{4}\left(\frac{\hbar^{2} g^{2}}{2 m}\right)^{1 / 3} \approx 1.082\left(\frac{\hbar^{2} g^{2}}{2 m}\right)^{1 / 3}
$$

which is very close to the actual value.

Problem 4

(a) The system is in the singlet state

$$
|00\rangle=\frac{1}{\sqrt{2}}[|+-\rangle-|-+\rangle]
$$

(b) If the electron is found in the state $|+\rangle$, then the system will be in $|++\rangle$ or $|+-\rangle$. However, $|++\rangle$ is orthogonal to the state of the system, so $|+-\rangle$ is the only possibility. The probability is

$$
P=|\langle+-\mid 00\rangle|^{2}=\frac{1}{2}
$$

This is also expected from symmetry (invariance under reflection in z-direction).
(c) If the spin of the positron is in the \hat{n}-direction, then the positron is in the eigenstate of

$$
S_{n}=\hat{n} \cdot \vec{S}=\sin \theta S_{x}+\cos \theta S_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

with eigenvalue $+\frac{\hbar}{2}$,

The probability that the spin of the positron is found in the \hat{n} direction is the same as the probability that the spin of the positron is found in the $-\hat{n}$ direction (by symmetry), i.e.,

$$
P_{n}=\frac{1}{2}
$$

After A finds the spin of the electron to be in the positive z-direction, the system is in the state

$$
|\psi\rangle=\cos \frac{\theta}{2}|++\rangle+\sin \frac{\theta}{2}|+-\rangle
$$

The probability of finding the system in this state is

$$
P_{\psi}=|\langle\psi \mid 00\rangle|^{2}=\frac{1}{2} \sin ^{2} \frac{\theta}{2}
$$

The probability of A finding the spin of the electron to be in the positive z-direction is

$$
P=\frac{P_{\psi}}{P_{n}}=\sin ^{2} \frac{\theta}{2}
$$

