Midterm Exam II

Problem 1

Consider a system consisting of a spin $1 / 2$ particle and a spin $3 / 2$ particle governed by the Hamiltonian

$$
H=a \vec{S}_{1} \cdot \vec{S}_{2}
$$

where \vec{S}_{1} and \vec{S}_{2} are the two spin operators.
(a) Find the energy levels of the system and their degeneracies.
(b) Express the eigenvectors of H in terms of the common eigenvectors of $\left\{\vec{S}_{1}^{2}, S_{1 z}, \vec{S}_{2}^{2}, S_{2 z}\right\}$.

Problem 2

Consider a two-level system governed by the Hamiltonian

$$
H_{0}=\left(\begin{array}{cc}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right)
$$

where $E_{1}<E_{2}$.
Apply a perturbation λW, where

$$
W=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The Hamiltonian of the system is now

$$
H=H_{0}+\lambda W
$$

Assume $\lambda \ll E_{2}-E_{1}$.
(a) Find the exact energy levels of the perturbed system (eigenvalues of H) and corresponding eigenvectors.
(b) Use second order perturbation theory to calculate the energy levels to second order in λ and corresponding eigenvectors to first order in λ.

Compare your results to the exact expressions obtained in part (a).

Problem 3

A particle of mass m is moving in the x-direction under the influence of the potential

$$
V(x)=g|x|, \quad g>0
$$

Estimate the ground state energy E_{0} by using the variational method with the trial function

$$
\phi_{\alpha}(x)=\left\{\begin{array}{cll}
\alpha-|x| & , & |x|<\alpha \\
0 & , & |x|>\alpha
\end{array}\right.
$$

Compare your result with the exact value

$$
E_{0}=a\left(\frac{\hbar^{2} g^{2}}{2 m}\right)^{1 / 3} \quad, \quad a=1.019 \ldots
$$

[CAUTION: $\phi_{\alpha}^{\prime \prime}(x)$ is not defined when $\phi_{\alpha}^{\prime}(x)$ is discontinuous. Integrate by parts to get rid of second derivatives before you evaluate any integrals.]

Problem 4

An electron-positron pair is created. They are both spin $1 / 2$ particles. Suppose that the system has total spin $S=0$ and the two particles travel in opposite directions. Observer A measures the spin of the electron whereas observer B measures the spin of the positron.
(a) What is the state of the system?
(b) If B makes no measurement, calculate the probability that A will find the spin of the electron to be pointing in the positive z-direction.
(c) If B makes a measurement and finds that the spin of the positron is in the direction of the unit vector

$$
\hat{n}=\left(\begin{array}{c}
\sin \theta \\
0 \\
\cos \theta
\end{array}\right)
$$

calculate the probability that A will find the spin of the electron to be in the positive z-direction.

