PHYSICS 522 - SPRING 2011

Midterm Exam I - Solutions

Problem 1
Using

$$
\vec{J}=-\frac{i \hbar}{2 m} \varphi^{*} \vec{\nabla} \phi+\text { c.c. }
$$

we obtain

$$
\begin{gathered}
J_{S, r}=-\frac{i \hbar}{2 m}|f|^{2} \frac{e^{-i k r}}{r}\left(\frac{e^{i k r}}{r}\right)^{\prime}+\text { c.c. }=\frac{\hbar k}{m} \frac{1}{r^{2}}|f|^{2} \\
J_{S, \theta}=-\frac{i \hbar}{2 m} \frac{1}{r^{3}} f^{*} \frac{\partial f}{\partial \theta}+\text { c.c. } \\
J_{S, \phi}=-\frac{i \hbar}{2 m} \frac{1}{r^{3} \sin \theta} f^{*} \frac{\partial f}{\partial \phi}+\text { c.c. }
\end{gathered}
$$

Total current:

$$
I_{S}=\left.\int d \Omega r^{2} J_{S, r}\right|_{r=R}=\int d \Omega R^{2} \frac{\hbar k}{m} \frac{1}{R^{2}}|f|^{2}=\mathcal{C}, \quad \mathcal{C}=\frac{\hbar k}{m} \int d \Omega|f|^{2}
$$

To relate this to the cross section, we need the incident current,

$$
\vec{J}_{i n}=J_{i n} \hat{z}, \quad J_{i n}=-\frac{i \hbar}{2 m} e^{-i k z}\left(e^{i k z}\right)^{\prime}+\text { c.c. }=\frac{\hbar k}{m}
$$

The cross section is

$$
\sigma=\frac{I_{S}}{J_{i n}}=\int d \Omega|f|^{2}
$$

and

$$
\mathcal{C}=\frac{\hbar k}{m} \sigma
$$

Problem 2

(a)

$$
f_{B}=-\frac{1}{4 \pi} \frac{2 m}{\hbar^{2}} \int d^{3} r^{\prime} e^{-i \vec{q} \cdot \vec{r}^{\prime}} V\left(r^{\prime}\right)
$$

Choose axes so that \vec{q} is in the z^{\prime}-direction. Then

$$
\vec{q} \cdot \vec{r}^{\prime}=q r^{\prime} \cos \theta^{\prime}
$$

and

$$
q^{2}=\left(\vec{k}_{i}-\vec{k}_{S}\right)^{2}=2 k^{2}(1-\cos \theta)=4 k^{2} \sin ^{2} \frac{\theta}{2}
$$

We have

$$
f_{B}=-\frac{1}{4 \pi} \frac{2 m}{\hbar^{2}} 2 \pi \int_{0}^{\infty} d r^{\prime} r^{\prime 2} \int_{0}^{\pi} d \theta^{\prime} \sin \theta^{\prime} e^{-i q r^{\prime} \cos \theta^{\prime}} V\left(r^{\prime}\right)
$$

The integral over θ^{\prime} is done by changing variables to $t=\cos \theta^{\prime}$. We have

$$
\int_{0}^{\pi} d \theta^{\prime} \sin \theta^{\prime} e^{-i q r^{\prime} \cos \theta^{\prime}}=\int_{-1}^{1} d t e^{-i q r^{\prime} t}=\frac{1}{-i q r^{\prime}} e^{-i q r^{\prime}}+\text { c.c. }
$$

therefore

$$
f_{B}=\frac{m}{i q \hbar^{2}} \int_{0}^{\infty} d r^{\prime} r^{\prime} e^{-i q r^{\prime}} V\left(r^{\prime}\right)+\text { c.c. }=\frac{m V_{0}}{i q \hbar^{2}} \int_{0}^{r_{0}} d r^{\prime} r^{\prime} e^{-i q r^{\prime}}+\text { c.c. }
$$

The integral over r^{\prime} is done by integrating by parts,

$$
\int_{0}^{r_{0}} d r^{\prime} r^{\prime} e^{-i q r^{\prime}}=\left.\frac{1}{-i q} r^{\prime} e^{-i q r^{\prime}}\right|_{0} ^{r_{0}}-\frac{1}{-i q} \int_{0}^{r_{0}} d r^{\prime} e^{-i q r^{\prime}}=\frac{1}{-i q} r_{0} e^{-i q r_{0}}+\frac{1}{q^{2}}\left(e^{-i q r_{0}}-1\right)
$$

therefore

$$
f_{B}=\frac{m V_{0} r_{0}}{\hbar^{2} q^{2}}\left[e^{-i q r_{0}}+\frac{1}{i q r_{0}}\left(e^{-i q r_{0}}-1\right)+\text { c.c. }\right]=\frac{2 m V_{0} r_{0}}{\hbar^{2} q^{2}}\left[\cos q r_{0}-\frac{\sin q r_{0}}{q r_{0}}\right]
$$

(b) In the low energy limit, $q r_{0} \ll 1$, so

$$
f_{B}=\frac{2 m V_{0} r_{0}}{\hbar^{2} q^{2}}\left[1-\frac{1}{2}\left(q r_{0}\right)^{2}-\frac{q r_{0}-\frac{\left(q r_{0}\right)^{3}}{6}}{q r_{0}}+\ldots\right] \approx \frac{2 m V_{0} r_{0}}{\hbar^{2} q^{2}}\left[-\frac{\left(q r_{0}\right)^{2}}{3}\right]=-\frac{2 m V_{0} r_{0}^{3}}{3 \hbar^{2}}
$$

The differential Born cross section is

$$
\frac{d \sigma_{B}}{d \Omega}=\left|f_{B}\right|^{2} \approx \frac{4 m^{2} V_{0}^{2} r_{0}^{6}}{9 \hbar^{4}}
$$

So it is independent of q, therefore independent of the angles, therefore isotropic. The total Born cross section is

$$
\sigma_{B}=\int d \Omega \frac{d \sigma_{B}}{d \Omega}=4 \pi\left|f_{B}\right|^{2} \approx \frac{16 \pi m^{2} V_{0}^{2} r_{0}^{6}}{9 \hbar^{4}}
$$

Problem 3

(a) In an s-wave state, u is a function of r only and the Schrödinger equation is

$$
-\frac{\hbar^{2}}{2 m} u^{\prime \prime}+V(r) u=E u
$$

For $r>b$, this can be written as

$$
u^{\prime \prime}+k^{2} u=0, \quad k=\frac{\sqrt{2 m E}}{\hbar}
$$

We shall choose the solution

$$
u=\sin \left(k r+\delta_{0}\right)
$$

by setting the normalization constant arbitrarily to 1 and adjusting the phase to match the general asymptotic expression $\sin \left(k r-l \frac{\pi}{2}+\delta_{l}\right)$.
Alternatively, one can use the general solution for $R=u / r$,

$$
R=A j_{0}(k r)+B n_{0}(k r) \quad \text { with } \quad \tan \delta_{0}=-\frac{B}{A}
$$

where $j_{0}(x)=\frac{\sin x}{x}, n_{0}(x)=-\frac{\cos x}{x}$.
For $a<r<b$, the Schrödinger equation is

$$
u^{\prime \prime}+k^{\prime 2} u=0, \quad k^{\prime}=\frac{\sqrt{2 m\left(V_{0}+E\right)}}{\hbar}
$$

The solution needs to satisfy $u=0$ at $r=a$, so

$$
u=B \sin k^{\prime}(r-a)
$$

or we can start with the general solution

$$
u=B^{\prime} \sin k^{\prime} r+C^{\prime} \cos k^{\prime} r
$$

and impose $u(a)=0$ to get $\frac{C^{\prime}}{B^{\prime}}=-\tan k^{\prime} a$.
Next, we match the two expressions at $r=b$ to obtain

$$
\sin \left(k b+\delta_{0}\right)=B \sin k^{\prime}(b-a), \quad k \cos \left(k b+\delta_{0}\right)=B k^{\prime} \cos k^{\prime}(b-a)
$$

Dividing these two equations, we obtain

$$
\tan \left(k b+\delta_{0}\right)=\frac{k}{k^{\prime}} \tan k^{\prime}(b-a)
$$

which determines δ_{0},

$$
\delta_{0}=-k b+\alpha, \quad \tan \alpha=\frac{k}{k^{\prime}} \tan k^{\prime}(b-a)
$$

(b) In the low energy limit, k is small and

$$
k^{\prime} \approx k_{0}=\frac{\sqrt{2 m V_{0}}}{\hbar}
$$

therefore

$$
k b+\delta_{0} \approx \tan \left(k b+\delta_{0}\right) \approx \frac{k}{k_{0}} \tan k_{0}(b-a)
$$

and so

$$
\delta_{0} \approx k b\left[\frac{\tan k_{0}(b-a)}{k_{0} b}-1\right]
$$

The above approximations are valid as long as we are not near a resonance.
The cross section is

$$
\sigma \approx \frac{4 \pi}{k^{2}} \sin ^{2} \delta_{0} \approx \frac{4 \pi}{k^{2}} \delta_{0}^{2} \approx 4 \pi b^{2}\left[\frac{\tan k_{0}(b-a)}{k_{0} b}-1\right]^{2}
$$

(c) We have a resonance when

$$
\frac{\tan k_{0}(b-a)}{k_{0} b}-1
$$

diverges. This occurs when $\tan k_{0}(b-a)$ diverges, i.e., when

$$
k_{0}(b-a)=\left(n+\frac{1}{2}\right) \pi, \quad n=0,1,2, \ldots
$$

therefore, for a resonance,

$$
V_{0}=\left(n+\frac{1}{2}\right)^{2} \frac{\pi^{2} \hbar^{2}}{2 m(b-a)^{2}}
$$

Problem 4

We have

$$
f_{B}=-\frac{1}{4 \pi} \frac{2 m}{\hbar^{2}} \int d^{3} r^{\prime} e^{-i \vec{q} \cdot \vec{r}^{\prime}} V\left(\vec{r}^{\prime}\right)
$$

Switch variables to $\vec{r}^{\prime \prime}=\vec{r}^{\prime}-\vec{R}$. Then the above expression becomes

$$
f_{B}=-\frac{1}{4 \pi} \frac{2 m}{\hbar^{2}} \int d^{3} r^{\prime \prime} e^{-i \vec{q} \cdot \vec{r}^{\prime \prime}-i \vec{q} \cdot \vec{R}} V\left(\vec{r}^{\prime \prime}+\vec{R}\right)
$$

Using the translation invariance property of the potential, we obtain

$$
f_{B}=-\frac{1}{4 \pi} \frac{2 m}{\hbar^{2}} \int d^{3} r^{\prime \prime} e^{-i \vec{q} \cdot \vec{r}^{\prime \prime}} e^{-i \vec{q} \cdot \vec{R}} V\left(\vec{r}^{\prime \prime}\right)
$$

The factor $e^{-i \vec{q} \cdot \vec{R}}$ is independent of $\vec{r}^{\prime \prime}$ and can be taken out of the integral. We deduce

$$
f_{B}=-\frac{1}{4 \pi} \frac{2 m}{\hbar^{2}} e^{-i \vec{q} \cdot \vec{R}} \int d^{3} r^{\prime \prime} e^{-i \vec{q} \cdot \vec{r}^{\prime \prime}} V\left(\vec{r}^{\prime \prime}\right)
$$

Apart from the additional factor, this is the same expression we started with. Therefore

$$
f_{B}=e^{-i \vec{q} \cdot \vec{R}} f_{B}
$$

It follows that unless $e^{-i \vec{q} \cdot \vec{R}}=1$, the amplitude must vanish. The additional factor is 1 when

$$
\vec{q} \cdot \vec{R}=2 \pi n, \quad n \in \mathbb{Z}
$$

