PHYSICS 522 - SPRING 2011
Midterm Exam | - Solutions
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To relate this to the cross section, we need the incident current,
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Problem 2
(a)
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Choose axes so that ¢'is in the z’-direction. Then
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The integral over ¢’ is done by changing variables to t = cos 6’. We have
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The integral over " is done by integrating by parts,
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The differential Born cross section is
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So it is independent of ¢, therefore independent of the angles, therefore isotropic.
The total Born cross section is
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Problem 3

(a) In an s-wave state, u is a function of » only and the Schrédinger equation is
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For r > b, this can be written as
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(b)

We shall choose the solution
u = sin(kr + &)

by setting the normalization constant arbitrarily to 1 and adjusting the phase to match
the general asymptotic expression sin(kr — 15 + &;).

Alternatively, one can use the general solution for R = u/r,
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For a < r < b, the Schrédinger equation is
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The solution needs to satisfy u = 0 at r = a, so
u= Bsink'(r —a)
or we can start with the general solution
uw= B'sink'r + ' cosk'r

and impose u(a) = 0 to get & = — tan ¥a.
Next, we match the two expressions at » = b to obtain
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Dividing these two equations, we obtain
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In the low energy limit, £ is small and
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and so
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The above approximations are valid as long as we are not near a resonance.
The cross section is
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(c) We have a resonance when
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diverges. This occurs when tan ko (b — a) diverges, i.e., when
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therefore, for a resonance,
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Problem 4
We have -
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Switch variables to 7 = # — . Then the above expression becomes
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Using the translation invariance property of the potential, we obtain
12 T
fB — _4_h_T;L d3rllefzq-r efzq-Rv(,r—j/>
m

The factor e~ is independent of 7" and can be taken out of the integral. We deduce
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Apart from the additional factor, this is the same expression we started with. Therefore
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It follows that unless =@ = 1, the amplitude must vanish. The additional factor is 1 when
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