
PHYSICS 522 - SPRING 2011
Midterm Exam I - Solutions

Problem 1
Using
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To relate this to the cross section, we need the incident current,
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Problem 2

(a)
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Choose axes so that ~q is in the z′-direction. Then

~q · ~r′ = qr′ cos θ′

and
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The integral over θ′ is done by changing variables to t = cos θ′. We have
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The integral over r′ is done by integrating by parts,
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(b) In the low energy limit, qr0 ¿ 1, so
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The differential Born cross section is

dσB

dΩ
= |fB|2 ≈ 4m2V 2

0 r6
0
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So it is independent of q, therefore independent of the angles, therefore isotropic.

The total Born cross section is
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Problem 3

(a) In an s-wave state, u is a function of r only and the Schrödinger equation is

− ~
2

2m
u′′ + V (r)u = Eu

For r > b, this can be written as

u′′ + k2u = 0 , k =

√
2mE

~
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We shall choose the solution
u = sin(kr + δ0)

by setting the normalization constant arbitrarily to 1 and adjusting the phase to match
the general asymptotic expression sin(kr − l π

2
+ δl).

Alternatively, one can use the general solution for R = u/r,

R = Aj0(kr) + Bn0(kr) with tan δ0 = −B

A

where j0(x) = sin x
x

, n0(x) = − cos x
x

.

For a < r < b, the Schrödinger equation is

u′′ + k′2u = 0 , k′ =

√
2m(V0 + E)

~

The solution needs to satisfy u = 0 at r = a, so

u = B sin k′(r − a)

or we can start with the general solution

u = B′ sin k′r + C ′ cos k′r

and impose u(a) = 0 to get C′
B′ = − tan k′a.

Next, we match the two expressions at r = b to obtain

sin(kb + δ0) = B sin k′(b− a) , k cos(kb + δ0) = Bk′ cos k′(b− a)

Dividing these two equations, we obtain

tan(kb + δ0) =
k

k′
tan k′(b− a)

which determines δ0,

δ0 = −kb + α , tan α =
k

k′
tan k′(b− a)

(b) In the low energy limit, k is small and

k′ ≈ k0 =

√
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~

therefore
kb + δ0 ≈ tan(kb + δ0) ≈ k
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and so

δ0 ≈ kb

[
tan k0(b− a)

k0b
− 1

]

The above approximations are valid as long as we are not near a resonance.

The cross section is
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(c) We have a resonance when
tan k0(b− a)

k0b
− 1

diverges. This occurs when tan k0(b− a) diverges, i.e., when

k0(b− a) =

(
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)
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therefore, for a resonance,
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Problem 4
We have

fB = − 1

4π

2m

~2

∫
d3r′e−i~q·~r′V (~r′)

Switch variables to ~r′′ = ~r′ − ~R. Then the above expression becomes
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∫
d3r′′e−i~q·~r′′−i~q·~RV (~r′′ + ~R)

Using the translation invariance property of the potential, we obtain
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The factor e−i~q·~R is independent of ~r′′ and can be taken out of the integral. We deduce
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∫
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Apart from the additional factor, this is the same expression we started with. Therefore

fB = e−i~q·~RfB

It follows that unless e−i~q·~R = 1, the amplitude must vanish. The additional factor is 1 when

~q · ~R = 2πn , n ∈ Z
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