PHYSICS 522 - SPRING 2011

Final Exam - Solutions

Problem 1

(a) We have $\left|\ell-\frac{1}{2}\right| \leq j \leq \ell+\frac{1}{2}$, so $j=\ell \pm \frac{1}{2}$.
(b) We have

$$
\vec{L}=\frac{\langle\vec{L} \cdot \vec{J}\rangle}{j(j+1) \hbar^{2}} \vec{J}, \quad \vec{S}=\frac{\langle\vec{S} \cdot \vec{J}\rangle}{j(j+1) \hbar^{2}} \vec{J}
$$

Using

$$
\vec{L} \cdot \vec{J}=\frac{1}{2}\left(\vec{J}^{2}+\vec{L}^{2}-\vec{S}^{2}\right), \quad \vec{S} \cdot \vec{J}=\frac{1}{2}\left(\vec{J}^{2}-\vec{L}^{2}+\vec{S}^{2}\right)
$$

we obtain

$$
\langle\vec{L} \cdot \vec{J}\rangle=\hbar^{2} \frac{j(j+1)+\ell(\ell+1)-\frac{3}{4}}{2}, \quad\langle\vec{S} \cdot \vec{J}\rangle=\hbar^{2} \frac{j(j+1)-\ell(\ell+1)+\frac{3}{4}}{2}
$$

and so $g_{\ell} \vec{L}+g_{S} \vec{S}=g_{J} \vec{J}$, where

$$
g_{J}=\frac{g_{\ell}\left[j(j+1)+\ell(\ell+1)-\frac{3}{4}\right]+g_{S}\left[j(j+1)-\ell(\ell+1)+\frac{3}{4}\right]}{2 j(j+1)}=\frac{g_{\ell}+g_{S}}{2}+\frac{g_{\ell}-g_{S}}{2} \frac{\ell(\ell+1)-\frac{3}{4}}{j(j+1)}
$$

Problem 2

Let

$$
H=H_{0}+W, \quad H_{0}=a \vec{L}^{2}, \quad W=b \hbar^{2} \cos (2 \phi)
$$

Since $b \ll a$, we shall treat W as a perturbation.
The eigenstates of H_{0} are $|\ell m\rangle$,

$$
H_{0}|\ell m\rangle=E_{\ell}|\ell m\rangle, \quad E_{\ell}=a \hbar^{2} \ell(\ell+1)
$$

The S level $(\ell=0)$ is non-degenerate, and

$$
\delta E_{0}=\langle 00| W|00\rangle=\int d \Omega W\left|Y_{0}^{0}\right|^{2}=\frac{b \hbar^{2}}{4 \pi} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta \cos (2 \phi)=0
$$

The P level $(\ell=1)$ is degenerate and we need to calculate the 3×3 matrix W. The only non-vanishing matrix elements are

$$
\langle 11| W|1-1\rangle=\langle 1-1| W|11\rangle^{*}=-\frac{3 b \hbar^{2}}{8 \pi} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin ^{2} \theta e^{-2 i \phi} \cos (2 \phi)
$$

Using

$$
\int_{0}^{\pi} d \theta \sin ^{2} \theta=\frac{\pi}{2}, \quad \int_{0}^{2 \pi} d \phi e^{-2 i \phi} \cos (2 \phi)=\pi
$$

we obtain

$$
\langle 11| W|1-1\rangle=\langle 1-1| W|11\rangle=-\frac{3 \pi b \hbar^{2}}{16}
$$

so for the P level,

$$
W=-\frac{3 \pi b \hbar^{2}}{16}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

The eigenvalues are

$$
\delta E_{1}^{ \pm}= \pm \frac{3 \pi b \hbar^{2}}{16}
$$

with corresponding eigenvectors

$$
\frac{1}{\sqrt{2}}(|11\rangle \mp|1-1\rangle)
$$

Problem 3

A hydrogen atom is subjected to a constant electric field \vec{E}_{0} that lasts for a time $0<t<\tau$. If at $t=0$ the atom is in the $2 S$ state, use perturbation theory to determine the time dependence of the system in the interval $0<t<\tau$.
What is the probability that it will be in the $2 P$ state for $t>\tau$?
You may use the spherical harmonics given above, and

$$
R_{20}=\frac{1}{\sqrt{2 a_{0}^{3}}}\left(1-\frac{r}{2 a_{0}}\right) e^{-r /\left(2 a_{0}\right)}, \quad R_{21}=\frac{1}{\sqrt{24 a_{0}^{3}}} \frac{r}{a_{0}} e^{-r /\left(2 a_{0}\right)}
$$

The perturbation is

$$
W=-q \mathcal{E}_{0} z=-q \mathcal{E}_{0} r \cos \theta=-\sqrt{\frac{4 \pi}{3}} q \mathcal{E}_{0} r Y_{1}^{0}
$$

for $0<t<\tau$, where we defined the z-axis along the external electric field.
The state of the system is

$$
|\psi(t)\rangle=\sum_{n, \ell, m} e^{-i E_{n} t / \hbar} b_{n \ell m}(t)|n \ell m\rangle
$$

First-order perturbation theory yields for $0<t<\tau$,

$$
b_{n \ell m}(t)=\frac{1}{i \hbar} \int_{0}^{t} d t^{\prime} e^{i \omega_{n 2} t^{\prime}} W_{n \ell m ; 200}\left(t^{\prime}\right)
$$

where we used the fact that at $t=0$ the atome is in the $2 S$ state $(|200\rangle)$. We have $\hbar \omega_{n 2}=$ $E_{n}-E_{0}$ and

$$
W_{n \ell m ; 200}\left(t^{\prime}\right)=-\sqrt{\frac{4 \pi}{3}} q \mathcal{E}_{0}\langle n \ell m| r Y_{1}^{0}|200\rangle
$$

The angular part of the matrix element is proportional to

$$
\langle\ell m| Y_{1}^{0}|00\rangle \propto\langle\ell m \mid 10\rangle
$$

This vanishes unless $\ell=1$ and $m=0$. Therefore the non-vanishing coefficients are $b_{n 10}$ and the state for $0<t<\tau$ is

$$
|\psi(t)\rangle=\sum_{n} e^{-i E_{n} t / \hbar} b_{n 10}(t)|n 10\rangle
$$

For $t>\tau$, the perturbation is switched off and the state evolves as

$$
|\psi(t)\rangle=\sum_{n} e^{-i E_{n} t / \hbar} b_{n 10}(\tau)|n 10\rangle
$$

The probability that the system is in the $2 P$ state for $t>\tau$ is

$$
P=\left|b_{210}(\tau)\right|^{2}=\frac{\left|W_{210 ; 200}\right|^{2}}{\hbar^{2}}\left|\int_{0}^{\tau} d t\right|^{2}=\frac{\left|W_{210 ; 200}\right|^{2} \tau^{2}}{\hbar^{2}}
$$

where

$$
\begin{aligned}
W_{210 ; 200} & =-\sqrt{\frac{4 \pi}{3}} q \mathcal{E}_{0}\langle 210| r Y_{1}^{0}|200\rangle \\
& =-\sqrt{\frac{4 \pi}{3}} q \mathcal{E}_{0} \int_{0}^{\infty} d r r^{3} R_{21} R_{20} \int d \Omega\left|Y_{1}^{0}\right|^{2} Y_{0}^{0} \\
& =-\frac{q \mathcal{E}_{0}}{\sqrt{3}} \int_{0}^{\infty} d r r^{3} R_{21} R_{20} \\
& =-\frac{q \mathcal{E}_{0}}{12 a_{0}^{4}} \int_{0}^{\infty} d r r^{4}\left(1-\frac{r}{2 a_{0}}\right) e^{-r / a_{0}} \\
& =3 q \mathcal{E}_{0} a_{0}
\end{aligned}
$$

Therefore

$$
P=\frac{9 q^{2} \mathcal{E}_{0}^{2} a_{0}^{2} \tau^{2}}{\hbar^{2}}
$$

independent of time.

Problem 4

(i) We have

$$
W_{f i}=\frac{1}{(2 \pi)^{3}} \int d^{3} r_{a} d^{3} r_{b}\left|\phi\left(\vec{r}_{a}\right)\right|^{2} e^{-i\left(\vec{k}_{f}-\vec{k}_{i}\right) \cdot \vec{r}_{b}} W\left(\vec{r}_{b}-\vec{r}_{a}\right)
$$

Expressing W in terms of its Fourier transform and integrating over \vec{r}_{b}, we obtain

$$
W_{f i}=\frac{1}{(2 \pi)^{3 / 2}} \int d^{3} r_{a} d^{3} k\left|\phi\left(\vec{r}_{a}\right)\right|^{2} e^{-i \vec{k} \cdot \vec{r}_{a}} \widetilde{W}(\vec{k}) \delta^{3}\left(\vec{k}_{i}+\vec{k}-\vec{k}_{f}\right)
$$

Using the δ-function to integrate over \vec{k}, we obtain

$$
W_{f i}=\frac{1}{(2 \pi)^{3 / 2}} \int d^{3} r_{a}\left|\phi\left(\vec{r}_{a}\right)\right|^{2} e^{-i\left(\vec{k}_{f}-\vec{k}_{i}\right) \cdot \vec{r}_{a}} \widetilde{W}\left(\vec{k}_{f}-\vec{k}_{i}\right)
$$

(ii) We have

$$
w=\frac{2 \pi}{\hbar}\left|W_{f i}\right|^{2} \rho\left(E_{i}\right), \quad \rho\left(E_{i}\right)=m \sqrt{2 m E_{i}}
$$

The incoming beam current is

$$
J_{i}=\frac{1}{(2 \pi)^{3}} \frac{\hbar k_{i}}{m}=\frac{1}{(2 \pi)^{3}} \sqrt{\frac{2 E_{i}}{m}}
$$

The cross section is

$$
\frac{d \sigma}{d \Omega}=\frac{w}{J_{i}}=\frac{(2 \pi)^{4} m^{2}}{\hbar}\left|W_{f i}\right|^{2}
$$

Therefore,

$$
\frac{d \sigma}{d \Omega}=\left.\left.\frac{2 \pi m^{2}}{\hbar}\left|\widetilde{W}\left(\vec{k}_{f}-\vec{k}_{i}\right)\right|^{2}\left|\int d^{3} r_{a}\right| \phi\left(\vec{r}_{a}\right)\right|^{2} e^{-i\left(\vec{k}_{f}-\vec{k}_{i}\right) \cdot \overrightarrow{r a}_{a}}\right|^{2}
$$

The Born cross section is

$$
\frac{d \sigma_{B}}{d \Omega}=\frac{m^{2}}{4 \pi^{2} \hbar^{4}}\left|\widetilde{W}\left(\vec{k}_{f}-\vec{k}_{i}\right)\right|^{2}
$$

therefore,

$$
\frac{d \sigma}{d \Omega}=\frac{d \sigma_{B}}{d \Omega} \mathcal{F}(\phi ; \vec{q})
$$

where

$$
\mathcal{F}(\phi ; \vec{q})=\left.\left.(2 \pi \hbar)^{3}\left|\int d^{3} r_{a}\right| \phi\left(\vec{r}_{a}\right)\right|^{2} e^{-i \overrightarrow{\vec{q}} \cdot \vec{r}_{a} / \hbar}\right|^{2}
$$

Problem 5

The energy levels and corresponding wavefunctions of a single particle are

$$
E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}, \quad \phi_{n}(x)=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}, \quad n=1,2, \ldots
$$

where we placed the walls at $x=0, L$.
To find the eigenvalues of W, let $\vec{S}=\vec{S}_{1}+\vec{S}_{2}$. Then

$$
W=\frac{a}{2}\left[\vec{S}^{2}-\vec{S}_{1}^{2}-\vec{S}_{2}^{2}\right]
$$

The eigenvalues are

$$
W_{S}=\frac{a \hbar^{2}}{2}\left[S(S+1)-\frac{3}{2}\right]
$$

where $S=0,1$, with corresponding eigenvectors $|00\rangle$ and $|1 M\rangle(M=-1,0,+1)$. The energy levels of the system of two spinors are

$$
E_{n_{1} n_{2} S}=E_{n_{1}}+E_{n_{2}}+W_{S}
$$

The lowest level (ground state) has $n_{1}=n_{2}=1$ and $S=0$ (since $S=1$ is not allowed, because it gives a symmetric wavefunction), therefore energy

$$
E_{110}=\frac{\pi^{2} \hbar^{2}}{m L^{2}}-\frac{3 a \hbar^{2}}{4}
$$

degereracy 1 and corresponding wavefunction

$$
\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)|00\rangle=\frac{2}{L} \sin \frac{\pi x_{1}}{L} \sin \frac{\pi x_{2}}{L} \frac{1}{\sqrt{2}}[|+-\rangle-|-+\rangle]
$$

At the next level, $n_{1}=1, n_{2}=2$ and this time both $S=0,1$ are allowed. The one with lower energy has $S=1$, because $W_{1}<0<W_{0}$ (since $a<0$), therefore energy

$$
E_{121}=\frac{5 \pi^{2} \hbar^{2}}{m L^{2}}+\frac{a \hbar^{2}}{4}
$$

degeneracy 3 and corresponding wavefunctions

$$
\frac{1}{\sqrt{2}}\left[\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right)-\phi_{2}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right]|1 M\rangle
$$

Notice that the spatial part is antisymmetric, because $|1 M\rangle$ is symmetric.

