
PHYSICS 522 - SPRING 2011
Final Exam - Solutions

Problem 1

(a) We have |`− 1
2
| ≤ j ≤ `+ 1

2
, so j = `± 1

2
.

(b) We have

~L =
〈~L · ~J〉

j(j + 1)~2
~J , ~S =

〈~S · ~J〉
j(j + 1)~2

~J

Using
~L · ~J =

1

2
( ~J2 + ~L2 − ~S2) , ~S · ~J =

1

2
( ~J2 − ~L2 + ~S2)

we obtain

〈~L · ~J〉 = ~2 j(j + 1) + `(`+ 1)− 3
4

2
, 〈~S · ~J〉 = ~2 j(j + 1)− `(`+ 1) + 3

4

2

and so g`
~L+ gS

~S = gJ
~J , where

gJ =
g`[j(j + 1) + `(`+ 1)− 3

4
] + gS[j(j + 1)− `(`+ 1) + 3

4
]

2j(j + 1)
=
g` + gS

2
+
g` − gS

2

`(`+ 1)− 3
4

j(j + 1)

Problem 2
Let

H = H0 +W , H0 = a~L2 , W = b~2 cos(2φ)

Since b¿ a, we shall treat W as a perturbation.
The eigenstates of H0 are |`m〉,

H0|`m〉 = E`|`m〉 , E` = a~2`(`+ 1)

The S level (` = 0) is non-degenerate, and

δE0 = 〈00|W |00〉 =

∫
dΩW |Y 0

0 |2 =
b~2

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θ cos(2φ) = 0

The P level (` = 1) is degenerate and we need to calculate the 3 × 3 matrix W . The only
non-vanishing matrix elements are

〈11|W |1− 1〉 = 〈1− 1|W |11〉∗ = −3b~2

8π

∫ 2π

0

dφ

∫ π

0

dθ sin2 θe−2iφ cos(2φ)

Using ∫ π

0

dθ sin2 θ =
π

2
,

∫ 2π

0

dφe−2iφ cos(2φ) = π

1



we obtain

〈11|W |1− 1〉 = 〈1− 1|W |11〉 = −3πb~2

16

so for the P level,

W = −3πb~2

16




0 0 1
0 0 0
1 0 0




The eigenvalues are

δE±
1 = ±3πb~2

16

with corresponding eigenvectors

1√
2

(|11〉 ∓ |1− 1〉)

Problem 3
A hydrogen atom is subjected to a constant electric field ~E0 that lasts for a time 0 < t < τ . If at
t = 0 the atom is in the 2S state, use perturbation theory to determine the time dependence
of the system in the interval 0 < t < τ .
What is the probability that it will be in the 2P state for t > τ?
You may use the spherical harmonics given above, and

R20 =
1√
2a3

0

(
1− r

2a0

)
e−r/(2a0) , R21 =

1√
24a3

0

r

a0

e−r/(2a0)

The perturbation is

W = −qE0z = −qE0r cos θ = −
√

4π

3
qE0rY

0
1

for 0 < t < τ , where we defined the z-axis along the external electric field.
The state of the system is

|ψ(t)〉 =
∑

n,`,m

e−iEnt/~bn`m(t)|n`m〉

First-order perturbation theory yields for 0 < t < τ ,

bn`m(t) =
1

i~

∫ t

0

dt′eiωn2t′Wn`m;200(t
′)

where we used the fact that at t = 0 the atome is in the 2S state (|200〉). We have ~ωn2 =
En − E0 and

Wn`m;200(t
′) = −

√
4π

3
qE0〈n`m|rY 0

1 |200〉

2



The angular part of the matrix element is proportional to

〈`m|Y 0
1 |00〉 ∝ 〈`m|10〉

This vanishes unless ` = 1 and m = 0. Therefore the non-vanishing coefficients are bn10 and
the state for 0 < t < τ is

|ψ(t)〉 =
∑

n

e−iEnt/~bn10(t)|n10〉

For t > τ , the perturbation is switched off and the state evolves as

|ψ(t)〉 =
∑

n

e−iEnt/~bn10(τ)|n10〉

The probability that the system is in the 2P state for t > τ is

P = |b210(τ)|2 =
|W210;200|2

~2

∣∣∣∣
∫ τ

0

dt

∣∣∣∣
2

=
|W210;200|2τ 2

~2

where

W210;200 = −
√

4π

3
qE0〈210|rY 0

1 |200〉

= −
√

4π

3
qE0

∫ ∞

0

drr3R21R20

∫
dΩ|Y 0

1 |2Y 0
0

= −qE0√
3

∫ ∞

0

drr3R21R20

= − qE0

12a4
0

∫ ∞

0

drr4

(
1− r

2a0

)
e−r/a0

= 3qE0a0

Therefore

P =
9q2E2

0a
2
0τ

2

~2

independent of time.
Problem 4

(i) We have

Wfi =
1

(2π)3

∫
d3rad

3rb|φ(~ra)|2e−i(~kf−~ki)·~rbW (~rb − ~ra)

Expressing W in terms of its Fourier transform and integrating over ~rb, we obtain

Wfi =
1

(2π)3/2

∫
d3rad

3k|φ(~ra)|2e−i~k·~raW̃ (~k)δ3(~ki + ~k − ~kf )

Using the δ-function to integrate over ~k, we obtain

Wfi =
1

(2π)3/2

∫
d3ra|φ(~ra)|2e−i(~kf−~ki)·~raW̃ (~kf − ~ki)

3



(ii) We have

w =
2π

~
|Wfi|2ρ(Ei) , ρ(Ei) = m

√
2mEi

The incoming beam current is

Ji =
1

(2π)3

~ki

m
=

1

(2π)3

√
2Ei

m

The cross section is
dσ

dΩ
=
w

Ji

=
(2π)4m2

~
|Wfi|2

Therefore,
dσ

dΩ
=

2πm2

~
|W̃ (~kf − ~ki)|2

∣∣∣∣
∫
d3ra|φ(~ra)|2e−i(~kf−~ki)·~ra

∣∣∣∣
2

The Born cross section is

dσB

dΩ
=

m2

4π2~4
|W̃ (~kf − ~ki)|2

therefore,
dσ

dΩ
=
dσB

dΩ
F(φ; ~q)

where

F(φ; ~q) = (2π~)3

∣∣∣∣
∫
d3ra|φ(~ra)|2e−i~q·~ra/~

∣∣∣∣
2

Problem 5
The energy levels and corresponding wavefunctions of a single particle are

En =
n2π2~2

2mL2
, φn(x) =

√
2

L
sin

nπx

L
, n = 1, 2, . . .

where we placed the walls at x = 0, L.
To find the eigenvalues of W , let ~S = ~S1 + ~S2. Then

W =
a

2

[
~S2 − ~S2

1 − ~S2
2

]

The eigenvalues are

WS =
a~2

2

[
S(S + 1)− 3

2

]

where S = 0, 1, with corresponding eigenvectors |00〉 and |1M〉 (M = −1, 0,+1).
The energy levels of the system of two spinors are

En1n2S = En1 + En2 +WS

4



The lowest level (ground state) has n1 = n2 = 1 and S = 0 (since S = 1 is not allowed,
because it gives a symmetric wavefunction), therefore energy

E110 =
π2~2

mL2
− 3a~2

4

degereracy 1 and corresponding wavefunction

φ1(x1)φ1(x2)|00〉 =
2

L
sin

πx1

L
sin

πx2

L

1√
2

[|+−〉 − | −+〉]

At the next level, n1 = 1, n2 = 2 and this time both S = 0, 1 are allowed. The one with lower
energy has S = 1, because W1 < 0 < W0 (since a < 0), therefore energy

E121 =
5π2~2

mL2
+
a~2

4

degeneracy 3 and corresponding wavefunctions

1√
2

[φ1(x1)φ2(x2)− φ2(x1)φ1(x2)] |1M〉

Notice that the spatial part is antisymmetric, because |1M〉 is symmetric.

5


