PHYSICS 522 - SPRING 2011

Final Exam

Problem 1

The magnetic moment of a nucleon is

$$
\vec{\mu}_{n}=\frac{e}{2 m_{n} c}\left(g_{\ell} \vec{L}+g_{S} \vec{S}\right)
$$

where m_{n} is its mass. For a proton, $g_{\ell}=1$ and $g_{S}=5.587$, and for a neutron, $g_{\ell}=0$ and $g_{S}=-3.826$.
Let $\vec{J}=\vec{L}+\vec{S}$ be the total angular momentum. Denote by ℓ and j the quantum numbers corresponding to the operators L^{2} and J^{2}.
(a) For a given ℓ, what are the possible values of j ?
(b) For given j and ℓ, show that the magnetic moment can be written as

$$
\vec{\mu}_{n}=\frac{e}{2 m_{n} c} g_{J} \vec{J}
$$

and find g_{J}.

Problem 2

A rotator performs a hindered rotation described by the Hamiltonian

$$
H=a \vec{L}^{2}+b \hbar^{2} \cos (2 \phi)
$$

with $a \gg b$.
Calculate the S and P energy levels of this system (with $\ell=0,1$, respectively) using firstorder perturbation theory, and find the corresponding eigenstates.
You may use

$$
Y_{0}^{0}=\frac{1}{\sqrt{4 \pi}}, \quad Y_{1}^{0}=\sqrt{\frac{3}{4 \pi}} \cos \theta, \quad Y_{1}^{ \pm 1}=\mp \sqrt{\frac{3}{8 \pi}} e^{ \pm i \phi} \sin \theta
$$

Problem 3

A hydrogen atom is subjected to a constant electric field $\overrightarrow{\mathcal{E}_{0}}$ that lasts for a time $0<t<\tau$. If at $t=0$ the atom is in the $2 S$ state, use perturbation theory to find expressions for the state of the system $|\psi(t)\rangle$ for $0<t<\tau$ and $t>\tau$.
What is the probability that the system will be in the $2 P$ state for $t>\tau$?
You may use the spherical harmonics given above, and

$$
R_{20}=\frac{1}{\sqrt{2 a_{0}^{3}}}\left(1-\frac{r}{2 a_{0}}\right) e^{-r /\left(2 a_{0}\right)}, \quad R_{21}=\frac{1}{\sqrt{24 a_{0}^{3}}} \frac{r}{a_{0}} e^{-r /\left(2 a_{0}\right)}
$$

Problem 4

A particle (a) is in a bound state. A beam of particles (b) of mass m, momentum $\hbar \vec{k}_{i}$, and energy

$$
E_{i}=\frac{\hbar^{2} \vec{k}_{i}^{2}}{2 m}
$$

is incident on particle (a).
Particle (a) is described by the wavefunction $\phi\left(\vec{r}_{a}\right)$ whereas each particle (b) is described by the wavefunction

$$
\frac{1}{(2 \pi)^{3 / 2}} e^{i \vec{k}_{i} \cdot \vec{r}_{b}}
$$

Particles (a) and (b) interact with potential energy that depends on their relative position only, $W\left(\vec{r}_{b}-\vec{r}_{a}\right)$. Suppose that (b) is scattered elastically with a final momentum $\hbar \vec{k}_{f}$ whereas (a) remains in the bound state $\phi\left(\vec{r}_{a}\right)$.
(i) Calculate the matrix element

$$
W_{f i}=\left\langle\phi, a ; \vec{k}_{f}, b\right| W\left(\vec{r}_{b}-\vec{r}_{a}\right)\left|\phi, a ; \vec{k}_{i}, b\right\rangle
$$

and express it in terms of the Fourier transform \widetilde{W} defined by

$$
W(\vec{r})=\frac{1}{(2 \pi)^{3 / 2}} \int d^{3} k e^{i \vec{k} \cdot \vec{r}} \widetilde{W}(\vec{k})
$$

You may use

$$
\int d^{3} r e^{i \vec{k} \cdot \vec{r}}=(2 \pi)^{3} \delta^{3}(\vec{k})
$$

(ii) Use Fermi's golden rule to show that the cross section is given by

$$
\frac{d \sigma}{d \Omega}=\frac{d \sigma_{B}}{d \Omega} \mathcal{F}(\phi ; \vec{q})
$$

where $\frac{d \sigma_{B}}{d \Omega}$ is the Born cross section and $\vec{q}=\hbar\left(\vec{k}_{f}-\vec{k}_{i}\right)$ is the momentum transfer, and find the form factor \mathcal{F}.

Problem 5

Two identical spin $1 / 2$ particles are constrained to move in the x-direction between two infinite walls which are a distance L apart. They interact with each other through the potential

$$
W=a \vec{S}_{1} \cdot \vec{S}_{2}, \quad a<0,
$$

where \vec{S}_{1} and \vec{S}_{2} are the two spin operators.
Find the energies of the two lowest energy levels, their degeneracies and corresponding eigenstates.

