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The Method

Perturbation theory applies to systems whose Hamiltonians may be expressed
in the form

H = H0 +W. (1)

H0 is called the unperturbed Hamiltonian and it is assumed to be time-independent.
We already know the solution corresponding to H0, which is to say that we al-
ready know its eigenvalues and eigenstates.

H0 | E0,...〉 = E0 | E0,...〉 (2)

E0 is degenerate in general and the 0,... allows for the possibility of other quan-
tum numbers if there is degeneracy. W is called the “perturbation”, which
causes modifications to the energy levels and stationary states of the unper-
turbed Hamiltonian. W is assumed to be much smaller than H0 and for sta-
tionary perturbation theory it is also time-independent. In order to quantify
the “smallness” of W we assume that it is proportional to a real, dimensionless
parameter λ which is much smaller than 1:

W = λŴ , (3)

where λ ¿ 1 and Ŵ is an operator whose matrix elements are comparable to
those of H0. Now, substitution of (3) into (1) yields

H = H0 + λŴ . (4)

From (4) we can see that as λ→ 0, H(λ) → H0, and we recover the unperturbed
Hamiltonian.
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Approximate Solution of the Eigenvalue Equation

We want to find a solution to the eigenvalue equation

H(λ) | ψ(λ)〉 = E(λ) | ψ(λ)〉 (5)

In order to approximate the solutions E(λ) and | ψ(λ)〉 we assume that they
can be expanded in powers of λ:

E(λ) = E0 + λE1 + λ2E2 + ... (6)

| ψ(λ)〉 = | ψ0〉+ λ | ψ1〉+ λ2 | ψ2〉+ ... (7)

Substitution of (4), (6) and (7) into (5) yields

(H0 + λŴ )(| ψ0〉+ λ | ψ1〉+ λ2 | ψ2〉+ ...) =

(E0 + λE1 + λ2E2 + ...)(| ψ0〉+ λ | ψ1〉+ λ2 | ψ2〉+ ...)
(8)

Multiply equation (8) out and collect like terms of λ. Now, since λ is arbitrary
we must equate the coefficients of successive powers of λ on both sides of the
equation.
0th Order Terms: λ0

H0 | ψ0〉 = E0 | ψ0〉 (9)

1st Order Terms: λ1

H0 | ψ1〉+ Ŵ | ψ0〉 = E0 | ψ1〉+ E1 | ψ0〉 (10)

2nd Order Terms: λ2

H0 | ψ2〉+ Ŵ | ψ1〉 = E0 | ψ2〉+ E1 | ψ1〉+ E2 | ψ0〉 (11)

Since equation (5) defines | ψ(λ)〉 only to within a constant factor, we can choose
its norm and phase. We assume | ψ(λ)〉 to be normalized and choose its phase
so that 〈ψ0 | ψ(λ)〉 is real.
Now, since 〈ψ(λ) | ψ(λ)〉 = 1 we obtain the following:
To 0th Order | ψ(λ)〉 = | ψ0〉

=⇒ 〈ψ(λ) | ψ(λ)〉 = 〈ψ0 | ψ0〉 = 1 (12)

To 1st Order | ψ(λ)〉 = | ψ0〉+ λ | ψ1〉
=⇒ 〈ψ(λ) | ψ(λ)〉 = (〈ψ0 | +λ〈ψ1 |)(| ψ0〉+ λ | ψ1〉)

= 〈ψ0 | ψ0〉+ λ〈ψ0 | ψ1〉+ λ〈ψ1 | ψ0〉+ λ2〈ψ1 | ψ1〉 = 1
(13)

We can drop the last term involving λ2 since we are only concerned with 1st
order terms. Now we also know that 〈ψ0 | ψ0〉 = 1 which then implies that
〈ψ0 | ψ1〉+ 〈ψ1 | ψ0〉 = 0. And, since 〈ψ0 | ψ1〉 is real we obtain

〈ψ0 | ψ1〉 = 〈ψ1 | ψ0〉 = 0 (14)

To 2nd Order | ψ(λ)〉 = | ψ0〉+ λ | ψ1〉+ λ2 | ψ2〉
A similar argument for the 2nd order terms may be applied to obtain

〈ψ0 | ψ2〉 = 〈ψ2 | ψ0〉 = −1
2
〈ψ1 | ψ1〉 (15)
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Non-Degenerate Energy Level

We will now find the corrections to the energy levels and energy eigenstates of
a non-degenerate level. Project the 1st order equation (10) onto the state | ψ0〉:

〈ψ0 | H0 | ψ1〉+ 〈ψ0 | Ŵ | ψ0〉 = 〈ψ0 | E0 | ψ1〉+ 〈ψ0 | E1 | ψ0〉 (16)

Now let H0 operate to the left on 〈ψ0 | in the first term and pull the constants
out to obtain

E0〈ψ0 | ψ1〉+ 〈ψ0 | Ŵ | ψ0〉 = E0〈ψ0 | ψ1〉+ E1〈ψ0 | ψ0〉 (17)

From this equation we can see that since 〈ψ0 | ψ0〉 = 1 from (12) and the first
and third terms cancel we obtain the first order correction to the energy level:

E1 = 〈ψ0 | Ŵ | ψ0〉 (18)

Now we want to find the first order correction, | ψ1〉, to the eigenstate. Project
the first order equation (10) onto the state 〈E′0 |, where 〈E′0 | is an eigenstate
corresponding to any other energy level other than E0. We obtain

E′0〈E′0 | ψ1〉+ 〈E′0 | Ŵ | ψ0〉 = E0〈E′0 | ψ1〉+ E1〈E′0 | ψ0〉 (19)

The last term, 〈E′0 | ψ0〉, is equal to zero since the two terms of the inner product
belong to different eigenvalues. Then we can solve for 〈E′0 | ψ1〉 to obtain

〈E′0 | ψ1〉 =
〈E′0 | Ŵ | ψ0〉
E0 − E′0

(20)

Now expanding the state | ψ1〉 on the | E′0〉 basis we conclude that the correction
to the energy eigenstate is

| ψ1〉 =
∑

E′0

| E′0〉〈E′0 | ψ1〉

=
∑

E′0 6=E0

| E′0〉
〈E′0 | Ŵ | ψ0〉
E0 − E′0

+ | E0〉〈E0 | ψ1〉

=
∑

E′0 6=E0

| E′0〉
〈E′0 | Ŵ | ψ0〉
E0 − E′0

,

(21)

where the last equation follows since 〈E0 | ψ1〉 = 0 due to the fact that the two
states of the inner product belong to different eigenvalues.
Now we follow the same procedure for the 2nd order equation. In order to find
the 2nd order correction to the energy level we project the 2nd order equation
(11) onto the state | ψ0〉:

E0〈ψ0 | ψ2〉+ 〈ψ0 | Ŵ | ψ1〉 = E0〈ψ0 | ψ2〉+ E1〈ψ0 | ψ1〉+ E2〈ψ0 | ψ0〉 (22)
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Now, the first terms on each side of the equation cancel, the second term on
the right side is zero since 〈ψ0 | ψ1〉 = 0, and 〈ψ0 | ψ0〉 = 1 which yields the
conclusion

E2 = 〈ψ0 | Ŵ | ψ1〉 (23)

Now, plugging in equation (21) for | ψ1〉 gives the 2nd order correction to the
energy level:

E2 =
∑

E′0 6=E0

〈ψ0 | Ŵ | E′0〉
〈E′0 | Ŵ | ψ0〉
E0 − E′0

=
∑

E′0 6=E0

|〈ψ0 | Ŵ | E′0〉|2
E0 −E′0

(24)

The second order correction to the energy level, | ψ2〉 is to be found on your
own at home following the same procedure as in the first order correction.

Degenerate Energy Level

Now we allow for the energy E0 to be degenerate so that the corresponding
states are denoted | E0,a〉, where a is a quantum number. If we suppose that
the degeneracy is 2, then a can take on two values: a = 1, 2.
We proceed in an analogous manner to the nondegenerate case except now we
must project the first order equation onto both possible states | E0,a〉. Doing
so we see that

E0〈E0,a | ψ1〉+ 〈E0,a |W | ψ0〉 = E0〈E0,a | ψ1〉+ E1〈E0,a | ψ0〉 (25)

Notice that the first term on each side of the equation cancels leaving us with
two equations; one for each case a = 1, 2:

〈E0,a |W | ψ0〉 = E1〈E0,a | ψ0〉 (26)

For a = 1
〈E0,1 |W | ψ0〉 = E1〈E0,1 | ψ0〉 (27)

But generally | ψ0〉 must be written as a linear combination of the states | E0,a〉:

| ψ0〉 = α1 | E0,1〉+ α2 | E0,2〉 (28)

Plugging equation (28) into (27) we obtain

α1〈E0,1 |W | E0,1〉+ α2〈E0,1 |W | E0,2〉 = E1α1 (29)

For a = 2
〈E0,2 |W | ψ0〉 = E1〈E0,2 | ψ0〉 (30)

Plugging equation (28) into (30) we obtain

α1〈E0,2 |W | E0,1〉+ α2〈E0,2 |W | E0,2〉 = E1α2 (31)
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Now, the operator W may be written in matrix form in the | E0,a〉 basis as

[
W11 W12

W21 W22

]

so that equations (29) and (31) may be written as the matrix equation

W

(
α1

α2

)
= E1

(
α1

α2

)

The characteristic equation det(W − E1I) = 0 may then be solved in order to
find the two eigenvalues and eigenstates.

Example: 1D Harmonic Oscillator

Here we can see the method in action by proceeding with an example that we
already know the answer to and then checking to see if our results match. The
Hamiltonian for the 1-D harmonic oscillator is given by

H0 =
p2

2m
+

1
2
mω2x2 (32)

Now, if the particle has a charge q we can turn on an electric field ~ε = εx̂ so
that we introduce a perturbation W = −qεx, and the total Hamiltonian then
becomes

H = H0 +W =
p2

2m
+

1
2
mω2x2 − qεx (33)

Recall that we have already solved this problem exactly in compliment FV where
we showed that

E′n = (n+
1
2
)~ω − q2ε2

2mω2
(34)

ϕ′(x) = ϕ(x− qε

mω2
) (35)

We will now find the same results using perturbation theory.
1st order correction to the energy

E(1)
n = 〈n |W | n〉 = −qε〈n | x | n〉 = 0 (36)

The last equality follows since x =
√

~
2mω (a† + a), and hence there is no shift

in the energy level to first order correction.
2nd order correction to the energy

E(2)
n =

∑

n′ 6=n

|〈n′ |W | n〉|2
En − E′n

(37)
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〈n′ |W | n〉 = −qε〈n′ | x | n〉 = −qε
√

~
2mω

〈n′ | a† + a | n〉 (38)

= −qε
√

~
2mω

(
√
n+ 1〈n′ | n+ 1〉+

√
n〈n′ | n− 1〉 (39)

Therefore, the only nonzero contributions in equation (37) will come from n′ =
n+ 1 and n′ = n− 1, yielding a second order correction to the energy term

E(2)
n = q2ε2

~
2mω

(−n+ 1
~ω

+
n

~ω
) = − q2ε2

2mω2
(40)

Comparing equations (34) and (40) we notice that our second order correction
to the energy level matches identically with the exact solution.
We now find the correction to the energy state:

| ψ1〉 =
∑

n′ 6=n

〈n′ |W | n〉
En − En′

| n′〉 (41)

= −qε
√

~
2mω

1
~ω

(−√n+ 1 | n+ 1〉+
√
n | n− 1〉) (42)

= −qε
√

~
2mω

1
~ω

(−a† + a) | n〉 (43)

= − iqε

m~ω2
p | n〉 (44)

Equation (42) follows from (39), equation (43) follows from the definitions of
the creation and annihilation operators, and equation (44) follows from the
definition of momentum as p = im~ω2 (a† − a). We can now check to see if
equation (44) matches with the exact solution (35).
Taylor expand equation (35):

ϕn(x− qε

mω2
) = ϕn(x)− qε

mω2

dϕ

dx
+ ... (45)

Now, since p = −i~ d
dx , we can see that equation (44) can be written as

ψ1(x) = 〈x | ψ1〉 = − qε

mω2

dϕ

dx
, (46)

and we can verify that our first order correction to the eigenstate does match
the known exact solution.

Ex-II: Harmonic oscillator with quadratic poten-
tial

Consider a harmonic oscillator with hamiltonian H0, which is given by

H0 =
P 2

2m
+

1
2
mw2x2 (47)
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Let us add a quadratic potential to above oscillator. So, the perturbation is
given by

W =
1
2
λmw2x2 (48)

We assume λ ¿ 1. In practice, this can be done by adding very weak spring
with small spring constant. Now, the hamiltonian becomes,

H = H0 +W =
P 2

2m
+

1
2
(λ+ 1)mw2x2 (49)

The hamiltonian given by equation (49) is also the equation of harmonic oscil-
lator with frequency ω′ = ω

√
1 + λ, which can be solved exactly. So, the new

energy levels is given by

E′n = (n+
1
2
)~ω′ (50)

Where,
ω′ = ω

√
(1 + λ) (51)

Using taylor expansion, we get different order correction in energy level

E′n = (n+
1
2
)~ω(1 +

λ

2
− λ2

8
+ .............) (52)

But,this time we want to solve the problem using perturbation theory. First,
we solve problem in H0, the solution of which is

H0 | n〉 = En | n〉 (53)

Where
En = (n+

1
2
)~ω (54)

So, knowing that we can write expression for E’, which is general expression for
any perturbation

E′n = En + λ〈n|W |n〉+ λ2
∑

n′ 6=n

|〈n′|W |n〉|2
En − E′n

+ .... (55)

The second term in equation (55) is average potential energy of harmonic oscil-
lator, and therefore is exactly half of total energy of harmonic oscillator without
perturbation. This is as expected from equation (52). We can also calculate it
by using creation and annihilation operator.

〈n|W |n〉 =
1
2
mω2〈n|x2|n〉

=
1
2
EN (56)
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To calculate the third term let us first calculate 〈n′|W |n〉

〈n′|W |n〉 =
1
2
mω2 ~

2mω
〈n′|(a† + a)2|n〉

=
~ω
4
〈n′|a†2 + a2 + a†a+ aa†|n〉

=
~ω
4

[
√

(n+ 1)(n+ 2)δn′,n+2 +
√
n(n− 1)δn′,n−2 + (2n+ 1)δn′,n

(57)

The first terms contributes when n′ = n + 2, second term contributes when
n′ = n − 2. But third contributes only when n′ = n, which is excluded in our
relation

∑

n′ 6=n

|〈n′|W |n〉|2
~ω(n′ − n)

=
~ω
16

[−1
2
(n+ 1)(n+ 2) +

1
2
n(n− 1)]

= −1
8
~ω(n+

1
2
) (58)

We get exactly same term as expected from equation (52). Similarly, we can
calculate higher order terms.

EX-3: Harmonic oscillator with cubic potential

This time we add cubic potential to the same hamiltonian.

W = x3 (59)

In this case there is no way to solve the problem as we did previous example. So,
we must use perturbation theory to solve this problem. Here, the first term in
energy will be original energy without perturbation. The second term in energy
is also straightforward (i.e. zero since x3 is odd)

〈n|x3|n〉 = 0 (60)

The first correction in energy will be coefficient of λ2. First we will evaluate
〈n′|W |n〉. Most of the terms of 〈n′|W |n〉 are zero. The non zero terms are,
(i) When n′ = n+ 3

〈n+ 3|W |n〉 = (
~

2mω
)

3
2 〈n+ 3|(a†)3|n〉 (61)

|〈n+ 3|W |n〉|2 = (
~

2mω
)

3
2 (n+ 1)(n+ 2)(n+ 3) (62)

(ii) When n′ = n− 3

|〈n+ 3|W |n〉|2 = (
~

2mω
)

3
2n(n− 1)(n− 2) (63)
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(iii) When n′ = n+ 1

|〈n+ 3|W |n〉|2 = (
~

2mω
)

3
2 9(n+ 1)3 (64)

(iv)When n′ = n− 1

|〈n+ 3|W |n〉|2 = (
~

2mω
)

3
2 9n3 (65)

Combining contributions from all these terms, we get

∑

n′ 6=n

|〈n′|W |n〉|2
~ω(n′ − n)

= (
~

2mω
)

3
2

1
~ω

[−1
3
(n+1)(n+2)(n+3)+

1
3
n(n−1)(n−2)−9(n+1)3+9n3]

(66)
With little effort in algebra

= −1
8
~2

m3ω4
[30(n+

1
2
)2] +

7
2
] (67)

Finally, different between two successive energy level

E′n+1 − E′n = ~ω − 15
2
λ2~2

m3ω4
(n+ 1) (68)

In this case, separation in energy level is not equal but increases with increase in
value of n. In realistic system, we never have only quadratic potential. Actually,
if we expand potential around minimum, there will be higher order corrections.
So, these cubic terms comes to play.

Diatomic Molecule

Consider a molecule which consists of two atoms. Let us pretend that we don’t
know much about the molecule. First, we guess that when the atoms are very
far away the force between them must be attractive, otherwise no molecule could
be formed. However, at closer distances, they repel each other, since they are
restricted to be at finite distance from Heisenberg Uncertainty principle. Hence,
there must be an equilibrium distance, which is also the size of molecule. The
potential energy at this point is the dissociation energy of the molecule. Also,
we have bound states due to this potential.

Expanding potential(Figure 1) around minimum value of potential energy,

V (r) = V (r0)+V ′(r0)(r−r0)+ 1
2
V ′′(r0)(r−r0)2+

1
6
V ′′′(r0)(r−r0)3+...... (69)
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Figure 1: Potential of a diatomic moleculel

The higher order terms are less significant. V ′(r0) will be zero, since potential
is minimum at this point. If we call r − r0 = x, then, the second order term
correpsonds to a harmonic oscillator and 1

6V
′′′(r0) is λ for a cubic potential in

our formulation. Assume the system is in ground state, which is quite common
at room temperature since thermal energy is much less than energy of harmonic
oscillator(KT ¿ ~ω) at room temperature. Now, we want to measure the pos-
sible transitions of the molecule by interacting with electromagnetic radiation.
The dipole moment D couples to electromagnetic waves,thus for two states |φ〉
and |ψ〉 to be able to transition from one to another the condition 〈φ|D|ψ〉 6= 0
has to be satisfied.

When a system goes from first excited state |φ1〉 to ground state |φ0〉 so that
energy of system changes.

|φ1〉 → |φ0〉+ photon (70)

the frequency of photon is given by ω1 = E1−E0
~ ≈

√
V ′′(r0)
m

This is what happens if we include only up till the second order term in the
potential energy in equation (69). In this case the states |φn〉 become the har-
monic oscillator states |n〉. To be more accurate,we need to consider the third
order term of the potential energy in equation (69). So, the general expression
forthe ground state becomes

|φ0〉 → |0〉+ λ|ψ〉+ .... (71)
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where |ψ〉 is the first order correction

|ψ〉 =
∑

n6=0

〈n|W |0〉|n〉
n~ω

(72)

So, the ground state becomes,

|φ0〉 → |0〉 − λ
〈1|W |0〉
~ω

|1〉 − λ
〈3|W |0〉

3~ω
|3〉 (73)

The ground state of the entire Hamiltonian is not only |0〉 but |0〉 with some
higher order correction. We can think of higher states |φn〉 to be approximtely
states of the harmonic oscillator |n〉. So, to this approximation, we can see there
can be transitions from |φ4〉,|φ2〉 and |φ1〉 to |φ0〉 because the correpsonding
matrix elements 〈φn|D|φ0〉 6= 0. When transition takes place from |φ3〉 → |φ0〉,
frequency of photon is given as by applying our results for the cubic potential
multiple times.

ω3→0 =
E′3 − E′0
~

(74)

= 3ω − 90
2
λ2 ~
m3ω4

(75)

Spin-Spin Interaction

Two spins interact because they correspond to magnetic moments which create
magnetic fields. Let us consider two spin half particle. Let us switch on magnetic
field

−→
B = Bẑ. So the Hamiltonian can be written as

H0 = ω1S1z + ω2S2z (76)

where ω1 and ω2 are given by equations

ω1 = −γ1B0 (77)

ω2 = −γ2B0 (78)

where γ is the gyromagnetic ratio. We know the eigenstates of Hamiltonian,
which are

H0|+ +〉 =
~
2
(ω1 + ω2)|+ +〉 (79)

H0|+−〉 =
~
2
(ω1 − ω2)|+−〉 (80)

H0| −+〉 =
~
2
(−ω1 + ω2)| −+〉 (81)
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H0| − −〉 = −~
2
(ω1 + ω2)| − −〉 (82)

we assume ω1 > ω2. In this way, we get four different energy levels. If we
make transition from first energy level to second energy level, we get a photon
of frequency ω2. Similarly, if we make transition between second and fourth en-
ergy level, we get photon of frequency ω1. Also, transition between first to third
and third to fourth energy level gives photon of frequency ω1 and ω2 respectively.

We emphasize the transition with ω1 and ω2 since they are frequency they
appear in the evolution of 〈Sx〉. Now, I am going to switch on small magnetic
field B1 in x̂ direction. If We make this field oscillating with frequency ω then
we can keep tuning it to one of ω1 or ω2 to get resonance. To do this, make B1

time dependent B1 = B1x̂cos(ωt). Then, we expect resonance when ω matches
with ω1 or ω2.By tuning this B1 we can studying the transition of the system
via resonanaces.

Consider two spin S1 and S2 at distance R = Rn̂. The magnetic moment
corresponding to them will be µ1 = γ1S1 and µ2 = γ2S2. Their interaction be-
tween these magnetic moment gives perturbation to hamiltonian which is given
by

W =
µ0

4π
γ1γ2[

−→
S1.
−→
S2 − 3n̂.

−→
S1n̂.

−→
S2]

R3
] (83)

If we take ξ = −µ0γ1γ2
4πR3

In spherical coordinates, n̂ can be written as

n̂ =




sinθcosφ
sinθsinφ
cosθ




Finally,

W =ξ[−S1zS2z − 1
2
S1+S2− − 1

2
S1−S2+

+ 3(S1zcosθ +
1
2
e−iφsinθS1+ +

1
2
eiφsinθS1−)

(S2zcosθ +
1
2
e−iφsinθS2+ +

1
2
eiφsinθS2−)]

Applying first order perturbation theory, we find the corrections to each of the
enrgy levels.

〈+ + |W |+ +〉 = ξ[−(
~
2
)2 + 3(

~
2
cosθ)2] = ξ

~2

4
[−1 + 3cos2θ] = ~Ω (84)

For perturbation theory to work, ~Ω ¿ ~ω1, ~ω2 has to be satisfied. Similarly
we can determine the correction for the other states.

〈−+ |W | −+〉 = −~Ω = 〈+− |W |+−〉, 〈− − |W | − −〉 = ~Ω (85)
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Figure 2: Energy corrections(non-degenerate)

From this correction we can find that the transition from |+ +〉 to | −+〉 now
has an energy of ~(ω1 + 2Ω), the transition from |+ +〉 to |+−〉 has an energy
of ~(ω2 + 2Ω), transition from |+−〉 to | −−〉 now has an energy of ~(ω1− 2Ω)
and transition from | −+〉 to | −−〉 now has an energy of ~(ω2 − 2Ω). We thus
observe that the original two peaks in the spectrum split into two sets of twin
peaks centered at ω1 and ω2 with the twin peaks separated by 4Ω(Figure 2 and
Figure 3).
So far we considered ω1 > ω2, but as in some real materials such as gypsum(CaSO4, 2H2O),
ω1 = ω2 = ω. In such cases we have to employ degenerate perturbation theory
since the eigenvalues of H0 for |+−〉 and | −+〉 are now the same.
We have already found 〈+− |W |+−〉 and 〈−+ |W | −+〉, it turns out the the
matrix elements 〈+ − |W | − +〉 and 〈− +W | − +〉 are also −~Ω. Thus in the
basis of |+−〉 and | −+〉 the perturbation can be written as

W = −~Ω
(

1 1
1 1

)
(86)

Solving for the eigenvalues and eigenvectors of this system, we obtain in the
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Figure 3: Split of resonance frequencies(non-degenerate)

Figure 4: Energy corrections(degenerate)
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Figure 5: Split of resonance frequencies(degenerate)

|SM〉 notation

|10〉 =
1√
2

(
1
1

)
+

1√
2

(
1
−1

)
, |00〉 =

1√
2

(
1
1

)
− 1√

2

(
1
−1

)
(87)

The eigenvalues of W in the |+−〉 and |−+〉 basis are 0 and −2~Ω correspond-
ing to the states |00〉 and |10〉 in the |SM〉 notation. The other 2 nondegenerate
states |+ +〉 and | − −〉 corresponds to |11〉 and |1− 1〉 in the |SM〉 notation.
Transitions only occur between states with the same L. The frequency of transi-
tion after correction from |11〉 to |10〉 is ω+3~Ω and the frequency for transition
from |10〉 to |1− 1〉 becomes ω− 3~Ω. We can thus observe twin peaks centered
at ω that are separated by 6Ω(Figure 4 and 5).

Volume Effect

In a hydrogen atom, we typically assume to have a potential of the form V (r) =
− e2

r , but with such an assumption we are treating the proton as a point which
it really isn’t. Thus this volume effect should show up in the spectrum of the
atom. Assume the atom has a radius a0 which is the Bohr radius and the proton
has a radius of r0, satisfying r0 ¿ a0. Also assume the charge of the proton is
uniformly distributed in the volume of the sphere, we ca find the potential for
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both inside and outside the proton

V (r) =

{
− e2

r , r > r0
3e2

r0
− e2

2r30
r2 , r < r0

(88)

Contrasting this potential with the original potential for which we known the
energy levels, we obtain that our perturbation for this problem

W =
{

0 , r > r0
e2

2r0
[( rr0 )2 + 2 r0r − 3] , r < r0

(89)

With this correction the Hamiltonian of the hydrogen atom can be written as

H = H0 +W (90)

H0 is the hamiltonian of the hydrogen atom treating the proton as fixed and as
a point with H0|nlm〉 = En|nlm〉 and En = −Eion

n2 . Where Eion is the ionizing
engergy. The engery levels |nlm〉 are degenerate which means we need to employ
degenerate perturbation theory to solve this problem.
Consider the subspace for a fixed n and W in that subspace. The matrix
elements in this basis are

〈nlm|W |nl′m′〉 =
∫
d3r φ∗nlm(−→r )W (r)φnl′m′(−→r )

=
∫
dΩY ∗lmYl′m′

∫
dr r2R∗nl(r)W (r)Rnl′(r)

= δll′δmm′

∫
dr r2W (r)|Rnl(r)|2 (91)

Thus W in this basis has only diagonal elements which simplifies everything.
Also, W is non-zero only within r0 thus within r0 we can approximate Rnl(r)
by Rnl(0). Thus the matrix elements are

〈nlm|W |nlm〉 =
∫
dr r2W (r)|Rnl(r)|2

≈ |Rnl(0)|2
∫ r0

0

dr r2W (r)

= |Rnl(0)|2 e
2r20
10

(92)

Thus we find the corrected energies are given by

E′nl = En + |Rnl(0)|2 e
2r20
10

+ ... (93)

Note that |Rnl(0)|2 is non-zero only when l = 0, thus only s-waves are affected
by this effect(within this approximation) which can be verified by observation.
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Variational Method

Suppose we are given a certain hamiltonian

H|ψ〉 = E|ψ〉 (94)

The expectation of the hamiltonian is given by

〈H〉 =
〈ψ|H|ψ〉
〈ψ|ψ〉 (95)

Now we introduce a perturbation to |ψ〉,
|ψ〉 → |ψ〉+ λ|δψ〉 (96)

Now 〈H〉 becomes, to the first order of λ,

〈H〉 → 〈H〉+ λ∗〈δψ|H|ψ〉+ λ〈ψ|H|δψ〉+ ...

〈ψ|ψ〉+ λ∗〈δψ|ψ〉+ λ〈ψ|δψ〉+ ...
=
N

D
(97)

Expand D−1 to first order of λ we obtain

D−1 = 〈ψ|ψ〉−1[1− λ∗
〈δψ|ψ〉
〈ψ|ψ〉 − λ

〈ψ|δψ〉
〈ψ|ψ〉 + ...] (98)

Plug this into the expression for 〈H〉 we obtain

〈H〉 → N

D
= 〈H〉+

1
〈ψ|ψ〉{λ〈ψ|H|δψ〉 − λ〈H〉〈ψ|δψ〉+ C.C.}+O(λ2) (99)

When the original wavefunction |ψ〉 is a eigenfunction of the Hamiltonian,
H|ψ〉 = E|ψ〉, the terms in curly brackets in the above equation becomes

λE〈ψ|δψ〉 − λE〈ψ|δψ〉+ C.C. = 0 (100)

Thus in this case after introducing |δψ〉 to |ψ〉, 〈H〉 → 〈H〉 + O(λ2), which
means any perturbation of first order to an eigenstate of the Hamiltonian will
not change the expectation of the Hamiltonian to the first order.
Conversely, if 〈H〉 is not changed by any |δψ〉 to first order, we can choose

|δψ〉 = λ∗(H − 〈H〉)|ψ〉 (101)

With this choice we plug it into the terms in culry brackets in Equation (99)

0 = λ〈ψ|H|δψ〉 − λ〈H〉〈ψ|δψ〉+ C.C. (102)
= |λ|2〈ψ|(H − 〈H〉)(H − 〈H〉)|ψ〉+ C.C. (103)
= 2〈δψ|δψ〉 (104)

From this result and the choice of |δψ〉 we find that H|ψ〉 = 〈H〉|ψ〉 which means
|ψ〉 is an eigenvector. We see that the converse of our previous argument is also
true.
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Example: Harmonic Oscillator

Consider a Harmonic oscillator, the hamiltonian of which is given by

H =
P 2

2m
+

1
2
mω2x2 (105)

We want to figure out the ground state. We first want to guess the wave func-
tion. For the ground state, a good guess will be ψ = e−αx

2
, where α is an

arbitrary parameter. Now, we need to calculate H

First, the denominator

〈ψ|ψ〉 =
∫ ∞

−∞
dx e−2αx2

(106)

The numerator, i. e. average of hamiltonian is given by

〈ψ|H|ψ〉 =
∫ ∞

−∞
dx [

~2

2m
(ψ′)2 +

1
2
mω2x2ψ2]

=
∫ ∞

−∞
dx [

~2

2m
(2αx)2e−2αx2

) +
1
2
mω2x2e−2αx2

]

= (
2~2α2

m
+

1
2
mω2)

∫ ∞

−∞
dx x2 e−2αx2

= (
2~2α2

m
+

1
2
mω2)[(−)

x e−2αx2

4α
|∞−∞ +

1
4α

∫ ∞

−∞
dx e−2αx2

](107)

The first term goes to zero when x→∞ and only the second remains. Also, the
integral inside the second term is exactly equal to 〈ψ|ψ〉 and get cancels with
the denominator. So

〈H〉 = [
2~2α2

m
+

1
2
mω2]

1
4α

=
~2

2m
α+

mω2

8α
(108)

I have free parameter α which we haven’t specified. So we find the extremum
of 〈H〉 with respect to α. i.e,

d〈H〉
dα

=
~2

2m
− mω2

8α2
= 0 (109)

This equation fixes α, which is given by

α =
mω

2~
(110)
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For this α,

〈H〉 =
~2

2m
mω

2~
+

1
8
mω2 2~

mω

=
~
4

+
~
4

=
~ω
2

(111)

Which is precisely the ground state energy. Now, we see ψ, which is the ground
state wave function, is given by

ψ = e−
mω
2~ x

2
(112)

This is exactly the same wave function that we obtain by solving the Schrodinger
equation.

Example II: Harmonic oscillator

Let us guess ψ which has peak at x→ 0 and goes to zero smoothly at x→∞,
as ground state of harmonic oscillator. For that we choose ψ = 1

(x2+α2) . In the
same way as before, we calculate the denominator.

〈ψ|ψ〉 =
∫ ∞

−∞
dx

1
(x2 + α2)2

(113)

substitute x = α tanθ, we get,

〈ψ|ψ〉 =
2
α3

∫ π
2

−π
2

dθ cos2 θ

=
π

2α3
(114)

Now, the numerator is

〈ψ|H|ψ〉 =
∫ ∞

−∞
dx [

~2

2m
(

1
(x2 + α2)

)′
2

+
1
2
mω2x2 1

(x2 + α2)2
] (115)

making substitution x = tan θ, we get,

〈ψ|H|ψ〉 =
π~2

8mα5
+
πmω2

4α
(116)

Therefore,

〈H〉 =
〈ψ|H|ψ〉
〈ψ|ψ〉 =

~2

4mα2
+
mω2α2

2
(117)

Takingd〈H〉dα = 0, we obtain

− ~2

2mα3
+mω2α = 0 (118)
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Figure 6: H+
2 ion

or,

α4 =
~2

2m2ω2
(119)

Looking at energy

〈H〉 =
~ω√

2
≈ 0.7 ~ω (120)

But, the correct answer is 0.5 ~ω

Chemical Bond of H+
2 Ion

In this section we will study the “real life” example of the chemical bond in a
H+

2 ion which consists of 2 protons which share an electron.
The geometry of the situation is shown in Figure 6 where ~r1 is the distance from
proton 1 to the electron, ~r2 is the distance from proton 2 to the electron, and
~R is the distance from proton 1 to proton 2. The Hamiltonian for the system is
given by

H =
p2

2µ
− e2

r1
− e2

r2
+
e2

R
(121)

where the last three terms in the Hamiltonian are the potential energies due
to the particle interactions. Now consider the system when the electron is very
close to proton 1. Referring to Figure 6 we see that r2 ≈ R which implies that
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the last two terms in the Hamiltonian cancel leaving us with

H ≈ p2

2µ
− e2

r1
(122)

Recent work with the hydrogen atom allows us to recognize ground state solu-
tions of the form

ϕ(~r1) = Ae
−r1
a0 =

1√
πa3

0

e
−r1
a0 (123)

where the constant A was determined by normalization. We can make the same
argument for the electron being very close to proton 2 which yields a solution

ϕ(~r2) =
1√
πa3

0

e
−r2
a0 (124)

The Variational Approach

Because the electron moves around in the real situation we cannot use these
specific solutions to generally describe the motion. However, we may use a
linear combination of the two solutions as our guess at the variational method

ψ = c1ϕ(~r1) + c2ϕ(~r2) (125)

So we want to solve the equation

Hψ = Eψ (126)

in order to find the eigenvalues and eigenfunctions. We use our guess and write
the eigenvalue equation in the form

H | ψ〉 = E | ψ〉 (127)

Projecting Equation (125) onto the state | 1〉 and using the expansion

| ψ〉 = c1 | 1〉+ c2 | 2〉 (128)

we obtain

c1〈1 | H | 1〉+ c2〈1 | H | 2〉 = Ec1〈1 | 1〉+ Ec2〈1 | 2〉 (129)

Projecting Equation (125) onto the state | 2〉 and using Equation (126) we
obtain

c1〈2 | H | 1〉+ c2〈2 | H | 2〉 = Ec1〈2 | 1〉+ Ec2〈2 | 2〉 (130)

These two equations may be written in matrix form as
(
H11 H12

H21 H22

)(
c1
c2

)
= E

(
S11 S12

S21 S22

) (
c1
c2

)
(131)
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where

〈i | H | j〉 = Hij (132)
〈i | j〉 = Sij (133)

and i,j = 1,2. Our job now is to analyze the equation

det(H − ES) = 0 (134)

We begin by constructing the matrix elements of H and S from Equation (131)
For the matrix S we have

S11 = 〈1 | 1〉 (135)

S12 = 〈1 | 2〉 (136)

S21 = 〈2 | 1〉 (137)

S22 = 〈2 | 2〉 (138)

We can simplify this by noting that ϕ1 and ϕ2 are both normalized so that
S11 = S22 = 1. We also notice that since our two states are real S12 = S21 = s.
Then we see that

s = 〈1 | 2〉 = 〈2 | 1〉 =
∫
d3r1ϕ1(r1)ϕ2(r2) =

∫
d3r1ϕ1(r1)ϕ2(r1 −R) (139)

where the last equality comes from the relation between positions r2 = r1 −R.
We obtain

s =
1
πa3

0

∫ ∞

0

∫ π

0

∫ 2π

0

r21cosθdr1dθdφe
−r1
a0 e

−|r1−R|
a0 (140)

= e
−R
a0 [1 +

R

a0
+

1
3
R2

a2
0

] (141)

For the matrix H we have

H11 = 〈1 | H | 1〉 = 〈1 | p
2

2µ
− e2

r1
− e2

r2
+
e2

R
| 1〉 (142)

The first two terms are simply the Hamiltonian corresponding to the hydrogen
atom with r = r1 where H ′ | 1〉 = E′ | 1〉. Since this is the familiar ionization
energy we may rewrite the equation as

H11 = −Eion − 〈1 | e
2

r2
| 1〉+

e2

R
(143)
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Now we determine 〈1 | e2r2 | 1〉 as follows

〈1 | e
2

r2
| 1〉 =

∫
d3r1ϕ

2(r1)
e2

| r1 −R | =
1
πa3

0

∫
d3r1e

−2r1
a0 e2

| r1 −R | (144)

= Eion
2a0

R
[1− e

−2R
a0 (1 +

R

a0
)] (145)

The matrix element H12 is found in a similar manner to be

H12 = Eion2e
−R
a0 (1 +

R

a0
) (146)

But H11 = H22 since it does not matter whether you integrate over r1 or r2 and
H12 = H21 since H is Hermitian so we have constructed the two matrices S and
H.

Solutions:

Now we find the determinant to obtain the eigenvalues.

det(H − ES) = (H11 − E)2 − (H12 − E)2 = 0 (147)

which yields the two solutions

E+ =
H11 +H12

1 + S
(148)

E− =
H11 −H12

1− S
(149)

If the protons fly away from each other (R →∞) what happens to these ener-
gies? Well, since both are dependent only on H11, H12, and S we can look at
the behavior of these quantities as R → ∞ to find out. Equations (143) and
(145) imply that

lim
R→∞

H11 → −Eion (150)

and equations (138) and (144) show that

lim
R→∞

S → 0 (151)

lim
R→∞

H12 → 0 (152)

Referring back to Equations (148) and (148) we see that

lim
R→∞

E+ → −Eion (153)

and
lim
R→∞

E− → −Eion (154)

So that the equations for E+ and E− come together asymptotically as shown
in Figure 7.
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Figure 7: E+ and E− converges to −Eion




