PHYSICS 521 - FALL 2010
 Midterm Exam II - Solutions

Problem 1

The potential is $V(x)=-q \mathcal{E}_{0} x$ and the Hamiltonian is

$$
H=\frac{p^{2}}{2 m}-q \mathcal{E}_{0} x
$$

From Ehrenfest's theorem

$$
\frac{d}{d t}\langle X\rangle=\frac{\langle P\rangle}{m}, \quad \frac{d}{d t}\langle P\rangle=-\left\langle V^{\prime}(X)\right\rangle
$$

or using

$$
\frac{d}{d t}\langle A\rangle=\frac{1}{i \hbar}\langle[A, H]\rangle
$$

for $A=X, P$, we obtain

$$
\frac{d^{2}}{d t^{2}}\langle X\rangle=\frac{1}{m} \frac{d}{d t}\langle P\rangle=\frac{q \mathcal{E}_{0}}{m}
$$

Classically, the force is $F=q \mathcal{E}_{0}$ and $F=m a$ implies

$$
\frac{d^{2} x}{d t^{2}}=\frac{F}{m}=\frac{q \mathcal{E}_{0}}{m}
$$

in agreement with the quantum mechanical result.

Problem 2

The Hamiltonian is

$$
H=-\vec{\mu} \cdot \vec{B}=-\gamma B_{0}\left[\frac{3}{5} S_{y}+\frac{4}{5} S_{z}\right]=\frac{\hbar \omega}{10}\left(\begin{array}{cc}
4 & -3 i \\
3 i & -4
\end{array}\right) \quad, \quad \omega=-\gamma B_{0}
$$

The energy levels are found from

$$
\operatorname{det}\left[\frac{\hbar \omega}{10}\left(\begin{array}{cc}
4 & -3 i \\
3 i & -4
\end{array}\right)-E \mathbb{I}\right]=0
$$

We obtain

$$
E=E_{ \pm}= \pm \frac{\hbar \omega}{2}
$$

Corresponding normalized eigenvectors

$$
\left|E_{+}\right\rangle=\frac{1}{\sqrt{10}}\binom{3 i}{-1}, \quad\left|E_{-}\right\rangle=\frac{1}{\sqrt{10}}\binom{-1}{3 i}
$$

At $t=0$ the state is

$$
|\psi(0)\rangle=|+, z\rangle=\binom{1}{0}
$$

To see how it evolves, we need to express it in terms of the energy eigenstates. We have

$$
|\psi(0)\rangle=-\frac{3 i}{\sqrt{10}}\left|E_{+}\right\rangle-\frac{1}{\sqrt{10}}\left|E_{-}\right\rangle
$$

Therefore,

$$
|\psi(t)\rangle=-\frac{3 i}{\sqrt{10}} e^{-i E_{+} t / \hbar}\left|E_{+}\right\rangle-\frac{1}{\sqrt{10}} e^{-i E_{-} t / \hbar}\left|E_{-}\right\rangle
$$

For the x-component of the spin, the eigenvalues are $\pm \hbar / 2$, so these are the possible outcomes. The corresponding eigenstates are

$$
|+, x\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}, \quad|-, x\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1}
$$

Probabilities:

$$
\begin{aligned}
P_{+} & =|\langle+, x \mid \psi(t)\rangle|^{2} \\
& =\frac{1}{10}\left|-3 i e^{-i \omega t / 2}\left\langle+, x \mid E_{+}\right\rangle-e^{+i \omega t / 2}\left\langle+, x \mid E_{-}\right\rangle\right|^{2} \\
& =\frac{1}{200}\left|-3 i(3 i-1)-(-1+3 i) e^{+i \omega t}\right|^{2} \\
& =\frac{1}{200}\left[(9+\cos (\omega t)+3 \sin (\omega t))^{2}+(3-3 \cos (\omega t)+\sin (\omega t))^{2}\right] \\
& =\frac{5+3 \sin (\omega t)}{10} \\
P_{-} & =|\langle-, x \mid \psi(t)\rangle|^{2} \\
& =\frac{1}{10}\left|-3 i e^{-i \omega t / 2}\left\langle-, x \mid E_{+}\right\rangle-e^{+i \omega t / 2}\left\langle+, x \mid E_{-}\right\rangle\right|^{2} \\
& =\frac{1}{200}\left|-3 i(3 i+1)-(-1-3 i) e^{+i \omega t}\right|^{2} \\
& =\frac{1}{200}\left[(9+\cos (\omega t)-3 \sin (\omega t))^{2}+(3-3 \cos (\omega t)-\sin (\omega t))^{2}\right] \\
& =\frac{5-3 \sin (\omega t)}{10}
\end{aligned}
$$

Evidently, $P_{+}+P_{-}=1$.

