PHYSICS 521 - FALL 2010

Midterm Exam II

Problem 1

A particle of mass m and charge q is moving in the x-direction under the influence of a uniform electric field $\vec{E}=\mathcal{E}_{0} \hat{x}$.
Calculate the average acceleration

$$
\frac{d^{2}\langle X\rangle}{d t^{2}}
$$

and compare your result with the one expected from classical mechanics.

Problem 2

A spin-1/2 particle of magnetic moment $\vec{\mu}=\gamma \vec{S}$, where

$$
S_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad S_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad, \quad S_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

is placed in a uniform magnetic field

$$
\vec{B}=B_{0}\left(\begin{array}{c}
0 \\
3 / 5 \\
4 / 5
\end{array}\right)
$$

At $t=0$ the z component of its spin is measured and found to be $+\hbar / 2$.
If the x component of the spin is measured at time $t>0$, what are the possible outcomes and with what probability will each occur?

