PHYSICS 521 - FALL 2007

Midterm Exam

Useful constants

- $\hbar=1.05 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
- $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- $1 \mathrm{eV}=1.6 \times 10^{-19} J$

Problem 1

A high-resolution neutron interferometer narrows the energy spread of thermal neutrons of kinetic energy $E=0.02 \mathrm{eV}$ to a wavelength dispersion level of $\Delta \lambda / \lambda \approx 10^{-9}$. A neutron has mass $m_{n}=1.67 \times 10^{-27} \mathrm{~kg}$.
(a) Estimate the length of the wave packets in the direction of motion.
(b) Over what length of time will the wave packets spread appreciably $(\Delta E \sim E)$?

Problem 2

For a wavefunction $\psi(x, t)$ satisfying the one-dimensional Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V(x) \psi=i \hbar \frac{\partial \psi}{\partial t}
$$

we define the probability charge and current densities, respectively, by

$$
\rho=|\psi|^{2}, \quad j=\frac{i \hbar}{2 m}\left(\psi \frac{\partial \psi^{*}}{\partial x}-\psi^{*} \frac{\partial \psi}{\partial x}\right)
$$

(a) Derive the continuity equation

$$
\frac{\partial \rho}{\partial t}+\frac{\partial j}{\partial x}=0
$$

By integrating, show that the total probability $P=\int d x \rho$ is conserved.
(b) If we add a constant imaginary term to the potential, i.e., replace $V(x)$ by $V(x)-i V_{0}$, where $V_{0}>0$, how does the continuity equation change?

Integrate the new continuity equation and find $d P / d t$ in terms of V_{0}, \hbar and P. Hence show that P decays exponentially with time.
Explain why V_{0} represents absorption.

Problem 3

The Schrödinger equation for a rigid body that is constrained to rotate about a fixed axis and has a moment of inertia I about this axis is

$$
-\frac{\hbar^{2}}{2 I} \frac{\partial^{2} \psi}{\partial \theta^{2}}=i \hbar \frac{\partial \psi}{\partial t}
$$

where $\psi(\theta, t)$ is a periodic function of the angle $\theta \in(0,2 \pi]$.
Find the eigenvalues and normalized eigenfunctions of the corresponding time-independent Schrödinger equation.
Is there any degeneracy?

Problem 4

The spin operator \vec{S} acting on a spin- $1 / 2$ particle has components

$$
S_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad, \quad S_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad, \quad S_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(a) Find the eigenvalues and corresponding normalized eigenstates of the component $\hat{n} \cdot \vec{S}$ where

$$
\hat{n}=\left(\begin{array}{c}
\cos \theta \\
\sin \theta \\
0
\end{array}\right)
$$

is the unit vector in the $x y$-plane forming an angle θ with the x-axis.
(b) Suppose the spin in the z-direction is measured and is found to be $+\hbar / 2$. Subsequently the spin along \hat{n} is measured. What are the possible outcomes of the second measurement and with what probability will each outcome occur?

