Final Exam

Useful constants

- $\hbar=1.05 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
- $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- $k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
- $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$

Problem 1
A particle moves in one dimension in the field of a potential

$$
V(x)=V_{0} \theta(x)+\lambda \delta(x), \quad \text { where } \quad \theta(x)=\left\{\begin{array}{ll}
1, & x>0 \\
0 & ,
\end{array} \quad x<0 \quad, \quad V_{0}, \lambda>0\right.
$$

with energy $E>V_{0}$. Calculate the transmission coefficient if the particle is incident from the left.

Problem 2

The Hamiltonian representing an oscillating LC circuit can be expressed as

$$
H=\frac{Q^{2}}{2 C}+\frac{\Phi^{2}}{2 L}
$$

where the charge Q and magnetic flux Φ obey the commutation relation

$$
[Q, \Phi]=i \hbar
$$

(similar to $[x, p]=i \hbar)$.
(a) Find the eigenvalues and corresponding eigenfunctions of the Hamiltonian.
(b) Work out the Heisenberg relation for the product of the uncertainties in the current I and voltage V.
Recall $\Phi=L I, Q=C V$.
(c) If $L=1 \mu \mathrm{H}, C=1 \mathrm{pF}$, how low must the temperature of the circuit be before quantum fluctuations become comparable to thermal energies (i.e., $E \sim k_{B} T$)?

Problem 3

The wavefunction of a particle subjected to a central potential $V(r)$ is given by

$$
\psi(\vec{r})=(x+y+4 z) f(r)
$$

(a) Is ψ an eigenfunction of L^{2} ? If so, what is the eigenvalue? If not, what are the possible outcomes of a measurement of L^{2} ?
(b) What are the possible outcomes of a measurement of L_{z} and with what probability will each occur?

You may use

$$
Y_{0}^{0}(\theta, \phi)=\frac{1}{\sqrt{4 \pi}}, \quad Y_{1}^{0}(\theta, \phi)=\sqrt{\frac{3}{4 \pi}} \cos \theta \quad, \quad Y_{1}^{ \pm 1}(\theta, \phi)=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \phi}
$$

Problem 4

A particle in a spherically symmetric potential is known to be in an eigenstate of L^{2} and L_{z} with eigenvalues $\hbar^{2} \ell(\ell+1)$ and $m \hbar$, respectively.
(a) Show that

$$
\left\langle L_{x}\right\rangle=\left\langle L_{y}\right\rangle=0, \quad\left\langle L_{x}^{2}\right\rangle=\left\langle L_{y}^{2}\right\rangle=\frac{\hbar^{2}}{2}\left[\ell(\ell+1)-m^{2}\right]
$$

(b) Show that ΔL_{x} and ΔL_{y} obey the Heisenberg uncertainty principle.

For which states does the inequality become equality?

Problem 5

Assuming the eigenfunctions for the Hydrogen atom to be of the form

$$
\Psi(\vec{r})=A r^{\beta} e^{-\alpha r} Y_{\ell}^{m}(\theta, \phi)
$$

solve the Schrödinger equation and determine the parameters α, β as well as the corresponding energy levels.
Are all energy levels of the Hydrogen atom obtained this way?

