PHYSICS 232-Solution Key to Test 3

1a. NO. You age slower if you are traveling at speed u. If $\Delta t_{o}=70$ years, then for a stationary observer on Earth the time that elapses is $\Delta t=\gamma \Delta t_{o}$. As u approaches the speed of light, Δt goes to infinity and there is no limit in the distance ($u \Delta t$), as measured by an Earth observer, you can travel.

1b. Wien's displacement law states $\lambda T=$ const. As T increases, λ decreases. In the visible spectrum, this means red \rightarrow yellow \rightarrow blue.
The radiation intensity is $I=\sigma T^{4}$, so it increases with temperature.
1c. The de Broglie wavelength is $\lambda=\frac{h}{m v}$. As the stone falls, v increases, so λ decreases.
2a. The elapsed time measured by an observer on the spaceship is $\Delta t_{o}=50 \mathrm{~min}$. On the Earth, this corresponds to time

$$
\Delta t=\frac{\Delta t_{o}}{\sqrt{1-u^{2} / c^{2}}}=\frac{50 \mathrm{~min}}{\sqrt{1-0.6^{2}}}=62.5 \mathrm{~min}
$$

The distance traveled (as measured by an Earth observer) is

$$
\Delta x=u \Delta t=0.6 \times 3 \times 10^{8} \times 62.5 \times 60=6.75 \times 10^{11} \mathrm{~m}
$$

2b. Since $\Delta t=62.5$ min. after midnight, the spaceship passed the navigational station at Earth time 1:02:30 a.m.

2c. The signal travels at the speed of light a distance Δx, so it takes time

$$
\Delta t_{\text {signal }}=\frac{\Delta x}{c}=\frac{6.75 \times 10^{11}}{3 \times 10^{8}}=2250 \mathrm{sec}=37.5 \mathrm{~min}
$$

The signal is detected at Earth time 1:40 a.m.
3a. From $e V_{0}=h f-\phi$ and $\lambda f=c$, we have

$$
\phi=\frac{h c}{\lambda}-e V_{0}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{437 \times 10^{-9}}-1.6 \times 10^{-19} \times 1.67=1.86 \times 10^{-19} J=1.16 \mathrm{eV}
$$

3b. From K.E. $=e V_{0}$, and K.E. $=\frac{1}{2} m v^{2}$, we have

$$
v=\sqrt{\frac{2 e V_{0}}{m}}=\sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 1.67}{9.1 \times 10^{-31}}}=7.66 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

Notice that $v \ll c$, which justifies using the non-relativistic formula for K.E.
4a. From Wien displacement law,

$$
\lambda=\frac{2.9 \times 10^{-3}}{T}=\frac{2.9 \times 10^{-3}}{2800}=1.04 \times 10^{-6} \mathrm{~m}
$$

4b. Intensity is

$$
I=\sigma T^{4}=5.67 \times 10^{-8} \times 2800^{4}=3.49 \times 10^{6} \mathrm{~W} / \mathrm{m}^{2}
$$

If $A=2 \mathrm{~mm}^{2}$ is the area, the total power is

$$
P=I A=3.49 \times 10^{6} \times 2 \times 10^{-6}=6.97 \mathrm{~W}
$$

5. The energy levels are

$$
E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}
$$

The energy of the emitted photon is

$$
E=E_{4}-E_{2}=\frac{16 h^{2}}{8 m L^{2}}-\frac{4 h^{2}}{8 m L^{2}}=\frac{12 h^{2}}{8 m L^{2}}=\frac{12 \times\left(6.6 \times 10^{-34}\right)^{2}}{8 \times 9.1 \times 10^{-31} \times\left(0.7 \times 10^{-9}\right)^{2}}=1.47 \times 10^{-18} \mathrm{~J}
$$

From $E=\frac{h c}{\lambda}$, we have

$$
\lambda=\frac{h c}{E}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{1.47 \times 10^{-18}}=1.35 \times 10^{-7} \mathrm{~m}=135 \mathrm{~nm}
$$

