PHYSICS 232 - Solution Key to Test 1

1a. $T=\frac{1}{f}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{L}{g}}$. At the mountaintop, g decreases, so T increases. The clock loses time.

1b. The fundamental is $f_{1}=\frac{v}{2 L}=\frac{1}{2 L} \sqrt{\frac{F}{\mu}}$.
$f_{1} \rightarrow 2 f_{1}$ if $F \rightarrow 4 F$.
$f_{1} \rightarrow 4 f_{1}$ if $F \rightarrow 16 F$.
1c. $I=\frac{p_{\max }^{2}}{2 \rho v}$. If $p_{\max } \rightarrow \frac{1}{2} p_{\max }$, then $I \rightarrow \frac{1}{4} I$.
2a. From the equation, $A=0.65 \mathrm{~m}, \omega=5.2 \mathrm{rad} / \mathrm{s}$.
We deduce $f=\frac{\omega}{2 \pi}=0.83 \mathrm{~Hz}$ and $T=\frac{1}{f}=1.21 \mathrm{~s}$.
2b. Differentiating, we obtain $v=-A \omega \sin (\omega t), a=-A \omega^{2} \cos (\omega t)$.
So $v_{\max }=A \omega=0.65 \times 5.2=3.38 \mathrm{~m} / \mathrm{s}$
and $a_{\max }=A \omega^{2}=0.65 \times(5.2)^{2}=17.576 \mathrm{~m} / \mathrm{s}^{2}$.
2c. P.E. $=\frac{1}{2} m \omega^{2} x^{2}=\frac{1}{2} \times 0.85 \times(5.2)^{2} \times(0.45)^{2}=2.33 \mathrm{~J}$.
Total energy $E=\frac{1}{2} m \omega^{2} A^{2}=\frac{1}{2} \times 0.85 \times(5.2)^{2} \times(0.65)^{2}=4.86 \mathrm{~J}$.
So K.E. $=E-$ P.E. $=4.86-2.33=2.53 \mathrm{~J}$.
3a. Speed $v=\sqrt{\frac{B}{\rho}}=\sqrt{\frac{1.6 \times 10^{9}}{918}}=1.32 \times 10^{3} \mathrm{~m} / \mathrm{s}$.
From $v=L / t$, we deduce $t=\frac{L}{v}=\frac{15 \times 10^{-2}}{1.32 \times 10^{3}}=1.14 \times 10^{-4} \mathrm{~s}$.
3b. From $v=\lambda f$, we deduce $\lambda=\frac{v}{f}=\frac{1.32 \times 10^{3}}{8.5}=155.3 \mathrm{~m}$.
3c. Pressure amplitude

$$
p_{\max }=B k A=B \frac{2 \pi}{\lambda} A=1.6 \times 10^{9} \times \frac{2 \pi}{155.3} \times 2.5 \times 10^{-3}=1.6 \times 10^{5} \mathrm{~Pa}
$$

Intensity $I=\frac{p_{\text {max }}^{2}}{2 \rho v}=\frac{\left(1.6 \times 10^{5}\right)^{2}}{2 \times 918 \times 1.32 \times 10^{3}}=1.1 \times 10^{4} \mathrm{~W} / \mathrm{m}^{2}$.
4a. By definition, $I=\frac{\text { Power }}{\text { Area }}$, so Power $=I \times$ Area.
From $\beta=(10 d B) \log \frac{I}{10^{-12}}$, we deduce

$$
I=10^{-12} \times 10^{6.5}=3.16 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}
$$

So Power $=3.16 \times 10^{-6} \times(2.5 \times 0.75)=5.9 \times 10^{-6} \mathrm{~W}$.
4b. We have $I \propto 1 / r^{2}$, so

$$
\frac{I_{\text {midpoint }}}{I}=\frac{r^{2}}{(r / 2)^{2}}=4
$$

so $I_{\text {midpoint }}=4 I=4 \times 3.16 \times 10^{-6}=1.264 \times 10^{-5} \mathrm{~W} / \mathrm{m}^{2}$.
4c. From $I=\frac{\text { Total Power }}{4 \pi r^{2}}$, we deduce

$$
\text { Total Power }=\mathrm{I} \times\left(4 \pi \mathrm{r}^{2}\right)=3.16 \times 10^{-6} \times 4 \pi \times(25)^{2}=0.025 \mathrm{~W}
$$

