PHYSICS 232-Solution Key to Sample Test 1

1a. When you connect two springs of constants k_{1} and k_{2}, respectively, you create a spring of constant $k_{\text {eff }}$, where

$$
\frac{1}{k_{e f f}}=\frac{1}{k_{1}}+\frac{1}{k_{2}}
$$

If $k_{1}=k_{2}=k$, then $k_{\text {eff }}=k / 2$. So each half has constant twice the constant of the original spring. The period is

$$
T=2 \pi \sqrt{m / k}
$$

so the period for each half is $1 / \sqrt{2}$ times the period of the original. The period decreases.
1 b . The two pulses must add up to the original one. Therefore, $\mathrm{L}=5 \mathrm{~cm}$ and $\mathrm{h}=2 \mathrm{~cm}$.
1c. For P , the difference in paths is $(\mathrm{AB})=2 \mathrm{~m}$. This is half the wavelength, so we have destructive interference at P.
Point Q is equidistant from A and B , so path difference is zero - constructive interference.
1d. The person is moving toward one end of the church, so he/she hears a higher frequency than the organ produces (Doppler effect). He/she hears a lower frequency from the other end because he/she is moving away from that source. The two waves interfere and form a beat.

2a. At time $t=0 \mathrm{~s}$, the object is at the maximum position, so the equation that describes its motion is

$$
x=A \cos (\omega t) \quad \omega=\frac{2 \pi}{T}
$$

At time $\mathrm{t}=1.5 \mathrm{~s}$,

$$
x=0.5 \cos (2 \pi \times 1.5 / 5)=-0.15 \mathrm{~m}
$$

2 b . The acceleration is

$$
a=\frac{d^{2} x}{d t^{2}}=-A \omega^{2} \cos (\omega t)=-\omega^{2} x
$$

The force is

$$
F=m a=-m \omega^{2} x=-0.01 \times(2 \pi / 5)^{2} \times(-0.15)=+0.0024 N
$$

in the positive direction.
3a. We have

$$
90=10 \log \frac{I}{I_{\text {min }}}
$$

where I is the intensity and $I_{\text {min }}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$. Therefore,

$$
I=10^{90 / 10} \times I_{\min }=10^{9} \times 10^{-12}=10^{-3} \mathrm{~W} / \mathrm{m}^{2}
$$

The total power is

$$
P=I \times 2 \pi R^{2}=10^{-3} \times 2 \pi \times 1^{2}=6.3 \times 10^{-3} W
$$

3 b . The power of the car engine is $P_{\text {car }}=400 \times 746=3 \times 10^{5} \mathrm{~W}$.
The fraction going into sound is

$$
\frac{P}{P_{\text {car }}}=\frac{6.3 \times 10^{-3}}{3 \times 10^{5}}=2.1 \times 10^{-8}
$$

