PHYSICS 231 - Solution Key to Test 2

1a. Before the metal is inserted, the capacitance is $C=\epsilon_{0} A / d$. After it is inserted, we have effectively two capacitors connected in series of capacitances $C_{1}=\epsilon_{0} A / d_{1}$ and $C_{2}=\epsilon_{0} A / d_{2}$, respectively. The capacitance is now

$$
\frac{1}{C^{\prime}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}=\frac{d_{1}+d_{2}}{\epsilon_{0} A}
$$

Since $d>d_{1}+d_{2}$, we have $1 / C>1 / C^{\prime}$, so $C^{\prime}>C$. The capacitance increases.
1b. In an open circuit, there is no current, so the voltage is \mathcal{E}. If the battery is short-circuited, then $\mathcal{E}=I r$, so $r=\mathcal{E} / I$. The rule of thumb is correct.

1c. With or without R_{2}, the current through R_{1} is

$$
I_{1}=\frac{\mathcal{E}}{R_{1}}
$$

2a. The area of each plate is $A=a^{2}=2.25 \mathrm{~m}^{2}$. The capacitance is

$$
C=\epsilon_{0} \frac{A}{d}=1.66 \times 10^{-8} F
$$

2 b . The voltage is

$$
V=\frac{Q}{C}=84.37 V
$$

The electric field is

$$
E=\frac{V}{d}=7.03 \times 10^{4} \mathrm{~V} / \mathrm{m}
$$

2c. The energy is

$$
U=\frac{Q^{2}}{2 C}=5.9 \times 10^{-5} J
$$

2d. If the separation is $d^{\prime}=3.6 \mathrm{~mm}$, the capacitance is

$$
C^{\prime}=\epsilon_{0} \frac{A}{d^{\prime}}=5.53 \times 10^{-9} \mathrm{~F}
$$

and the energy is

$$
U^{\prime}=\frac{Q^{2}}{2 C^{\prime}}=1.77 \times 10^{-4} J
$$

The work you have to do is

$$
W=U^{\prime}-U=1.18 \times 10^{-4} J
$$

3a. R_{1} and R_{2} are in series with total resistance

$$
R_{x}=R_{1}+R_{2}=6 \Omega
$$

R_{x} and R_{3} are in parallel with total resistance

$$
\frac{1}{R}=\frac{1}{R_{x}}+\frac{1}{R_{3}} \Rightarrow R=4 \Omega
$$

The current is

$$
I=\frac{\mathcal{E}}{r+R}=2.4 \mathrm{~A}
$$

I splits into I_{x} (through R_{x}) and I_{3} (through R_{3}). R, R_{x} and R_{3} all have the same voltage, so

$$
V_{a b}=I R=I_{x} R_{x}=I_{3} R_{3}
$$

SO

$$
I_{3}=I \frac{R}{R_{3}}=0.8 \mathrm{~A}
$$

and the current through R_{1} and R_{2} is

$$
I_{x}=I \frac{R}{R_{x}}=1.6 \mathrm{~A}
$$

$3 b$.

$$
V_{a b}=I R=\mathcal{E}-I r=9.6 \mathrm{~V}
$$

3c. There will be no current through R_{1} and R_{2} and the current though R_{3} will be

$$
I^{\prime}=\frac{\mathcal{E}}{R_{3}+r}=0.92 \mathrm{~A}
$$

