PHYSICS 231 - Solution Key to Sample Test 2

1a. Initially, the capacitor has capacitance C_{0}, say. Then the voltage is $V_{0}=Q / C_{0}$.
In the tank of oil, the capacitance becomes $C=K C_{0}$ and the voltage $V=Q / C=V_{0} / K$. Therefore, the voltage decreases and so does the electric field, because it is proportional to the voltage.

1 b . The current is proportional to the speed v. Since the current is constant through the resistor, so is the speed v. The kinetic energy of an electron is $\frac{1}{2} m v^{2}$. If v doesn't change, no kinetic energy is lost.

As the electron goes through the resistor, it loses potential energy eV . The heat $I V$ in the resistor is due to the loss of potential energy.

1c. The power is $P=V^{2} / R$, so $P \propto 1 / R$. The $60-\mathrm{W}$ bulb has twice the resistance of the $120-\mathrm{W}$ bulb.

1d. Yes, if you shortcircuit the terminals of the battery.
2a. The capacitors between a and d are connected in parallel, so the capacitance between a and d is

$$
C_{a d}=C_{1}+C_{2}=20 n F
$$

The capacitors between b and d are connected in series, so the capacitance between b and d is

$$
C_{b d}=\frac{1}{\frac{1}{C_{3}}+\frac{1}{C_{4}}}=4.8 \mathrm{nF}
$$

$C_{a d}$ and $C_{b d}$ are connected in series, so the capacitance between a and b is

$$
C_{a b}=\frac{1}{\frac{1}{C_{a d}}+\frac{1}{C_{b d}}}=3.87 n F
$$

2b. The charge on $C_{a b}$ is

$$
Q=C_{a b} V_{a b}=1.16 \mu C
$$

This is also the charge on $C_{a d}$ and $C_{b d}$, because they are connected in series.
$C_{b d}$ is made of C_{3} and C_{4} in series, so C_{3} and C_{4} have charge Q (same as $C_{b d}$).
$C_{a d}$ is made of C_{1} and C_{2} in parallel, so C_{1} has charge Q_{1} and C_{2} has charge Q_{2}. They all have the same voltage, so

$$
V_{a d}=\frac{Q}{C_{a d}}=\frac{Q_{1}}{C_{1}}=\frac{Q_{2}}{C_{2}}
$$

so

$$
Q_{1}=C_{1} \frac{Q}{C_{a d}}=0.464 \mu F \quad, \quad Q_{2}=C_{2} \frac{Q}{C_{a d}}=0.696 \mu F
$$

2c. $V_{a d}=Q / C_{a d}=58 \mathrm{~V}$.

2d.

$$
\begin{array}{ll}
U_{1}=\frac{Q_{1}^{2}}{2 C_{1}}=1.3 \times 10^{-5} \mathrm{~J}, & U_{2}=\frac{Q_{2}^{2}}{2 C_{2}}=2.0 \times 10^{-5} \mathrm{~J} \\
U_{3}=\frac{Q^{2}}{2 C_{3}}=8.4 \times 10^{-5} \mathrm{~J}, & U_{4}=\frac{Q^{2}}{2 C_{4}}=5.6 \times 10^{-5} \mathrm{~J}
\end{array}
$$

3a. The wire through c has two resistors in series and resistance

$$
R_{c}=2+4=6 \Omega
$$

The wire through d has two resistors in series and resistance

$$
R_{d}=4+2=6 \Omega
$$

R_{c} and R_{d} are in parallel, so the total resistance is

$$
R=\frac{1}{\frac{1}{R_{c}}+\frac{1}{R_{d}}}=3 \Omega
$$

3b. The current through a and b is

$$
I_{a}=I_{b}=\frac{\mathcal{E}}{R}=8 A
$$

Since $R_{c}=R_{d}$, this current splits into two equal currents,

$$
I_{c}=I_{d}=\frac{8 A}{2}=4 A
$$

3c.

$$
\begin{gathered}
V_{a b}=\mathcal{E}=24 \mathrm{~V} \\
V_{c d}=V_{c b}+V_{b d}=4 I_{c}-2 I_{d}=8 \mathrm{~V}
\end{gathered}
$$

