## PHYSICS 231 - Solution Key to Sample Test 1

1a. See FIGURE 22-22, p. 690.
1b. 1. FALSE: Gauss's law is a general law of Nature.
2. FALSE: There may be charges outside the surface.
3. FALSE: It can be positive on parts of the surface and negative on other parts of the surface, as long as the TOTAL charge is zero.
4. TRUE: Charges consist of electrons and protons.

1c. 3. The electron has negative charge. The force $F=-e E$ is in the direction opposite to $E$ and so is the acceleration, since $F=m a$.

2a. Charge $q_{1}$ creates an electric field of magnitude

$$
E_{1}=k \frac{q_{1}}{2^{2}}=6.74 \times 10^{3} \mathrm{~N} / \mathrm{C}
$$

and direction $\vec{E}_{1}=-6.74 \times 10^{3} \hat{y}$.
Charge $q_{2}$ creates an electric field of magnitude

$$
E_{2}=k \frac{q_{2}}{2^{2}}=11.24 \times 10^{3} \mathrm{~N} / \mathrm{C}
$$

and direction $\vec{E}_{2}=-11.24 \times 10^{3} \hat{y}$.
Charge $Q$ creates an electric field of magnitude

$$
E_{3}=k \frac{|Q|}{2^{2}+4^{2}}=1.8 \times 10^{3} \mathrm{~N} / \mathrm{C}
$$

and forms an angle

$$
\phi=\tan ^{-1} \frac{2}{4}=26.6^{\circ}
$$

with the $x$-axis. Therefore,

$$
\vec{E}_{3}=1.8 \times 10^{3} \cos \phi \hat{x}+1.8 \times 10^{3} \sin \phi \hat{y}=1.61 \times 10^{3} \hat{x}+0.8 \times 10^{3} \hat{y}
$$

The total electric field is

$$
\vec{E}=\vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3}=1.61 \times 10^{3} \hat{x}+5.3 \times 10^{3} \hat{y}
$$

Its magnitude is $E=5.54 \times 10^{3} \mathrm{~N} / \mathrm{C}$ and forms an angle

$$
\theta=\tan ^{-1} \frac{5.3 \times 10^{3}}{1.61 \times 10^{3}}=73^{\circ}
$$

with the $x$-axis.

2 b . The force from charge $q_{1}$ has magnitude

$$
F_{1}=k \frac{Q q_{1}}{4^{2}}=6.74 \times 10^{-3} \mathrm{~N}
$$

and direction $\vec{F}_{1}=-6.74 \times 10^{-3} \hat{x}$.
The force from charge $q_{2}$ has magnitude

$$
F_{2}=k \frac{Q q_{2}}{4^{2}+4^{2}}=5.6 \times 10^{-3} \mathrm{~N}
$$

and direction

$$
\vec{F}_{2}=-5.6 \times 10^{-3}\left(\cos 45^{\circ} \hat{x}+\sin 45^{\circ} \hat{y}\right)=-4 \times 10^{-3}(\hat{x}+\hat{y})
$$

The total force is

$$
\vec{F}=\vec{F}_{1}+\vec{F}_{2}=-10.74 \times 10^{-3} \hat{x}-4 \times 10^{-3} \hat{y}
$$

3a.

$$
\sigma_{1}=\frac{q_{1}}{A}=1.33 \mu C / m^{2}, \quad \sigma_{2}=\frac{q_{2}}{A}=3.33 \mu C / m^{2}, \quad \sigma_{3}=\frac{q_{3}}{A}=-4.67 \mu C / m^{2}
$$

3b. At $P$,

$$
E=\frac{\sigma_{1}}{2 \epsilon_{0}}-\frac{\sigma_{2}}{2 \epsilon_{0}}-\frac{\sigma_{3}}{2 \epsilon_{0}}=\frac{1.33-3.33+4.67}{2 \epsilon_{0}} \times 10^{-6}=1.51 \times 10^{5} \mathrm{~N} / \mathrm{C}
$$

At $Q$,

$$
E=\frac{\sigma_{1}}{2 \epsilon_{0}}+\frac{\sigma_{2}}{2 \epsilon_{0}}-\frac{\sigma_{3}}{2 \epsilon_{0}}=\frac{1.33+3.33+4.67}{2 \epsilon_{0}} \times 10^{-6}=5.27 \times 10^{5} \mathrm{~N} / \mathrm{C}
$$

At $R$,

$$
E=\frac{\sigma_{1}}{2 \epsilon_{0}}+\frac{\sigma_{2}}{2 \epsilon_{0}}+\frac{\sigma_{3}}{2 \epsilon_{0}}=\frac{1.33+3.33-4.67}{2 \epsilon_{0}} \times 10^{-6}=0 \mathrm{~N} / \mathrm{C}
$$

3c.

$$
F=q_{3}\left(E_{1}+E_{2}\right)=q_{3} \frac{\sigma_{1}+\sigma_{2}}{2 \epsilon_{0}}=-1.9 \mathrm{~N}
$$

