LECTURE 2

Schwarzschild black hole

Spacetime is provided with a metric tensor g,,,, so that a line element has length
ds?® = Guvdxt dz”

In flat spacetime, ds* = —dt* + dx? (x € R?), s0 g, =17, = diag(—1111) asa
matrix. We denote the determinant of g, by g. The Einstein equations are

no_ 1 o — 0 ,  with just gravity not matter
w9 W = source ,  in the presence of matter

R,,,, is the Ricci tensor (the contracted curvature tensor wa o

is the Ricci scalar. R, — %ng = 0 arises from the action

)and R = Ry, (its trace)

1
5= 167G

/ d*z/—gR.
If we take the trace of the Einstein equation in empty space, we get
RH — 1 Rat* =0
iz 9 I =

which implies R = 0 so R, = 0. Schwarzschild found the solution

ds* = —f(r)dt* + —er +r2dQ32
f(r)
where d23 = df? 4 sin® 0dy? is the line element on the sphere S? and
2GM
sy =1-%

Where do G and M come from?
Compare to electromagnetism with Maxwell’s equations without currents

0, F" = 0.
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Its simplest symmetric solution is A,, = (Ap,0) with V*Ay = 0s0 A = % i.e. the
Coulomb potential. ) turns out to be the charge by Gauss’s law.
In General Relativity, we can read off the mass from

g ~ —1+2V(r)

if V/(r) is small (i.e., when r — 00), where V' (r) is the Newtonian potential (V' (r) =
GM/r).

In the Schwarzschild solution f(r) diverges as r — 0 which is a true singularity. There
is also a singularity (which is an artifact of the coordinate system) at r = 2GM =
r+ which is called the horizon. While not a coordinate singularity, the horizon is
significant because inside (r < r) not even light can escape. Since f(r) = 0, proper
time for an observer approaching the horizon (v —ds? = 4/ f(r)dt) passes quickly
while to a distant observer it appears to take an infinite time to reach the horizon.

Now let us define 7 = it so Minkowski space becomes Euclidean (ds? = d72 + dx?)
and the Schwarzschild metric becomes

dr?
(1-75)

When r = r4 + ¢ is outside but close to the horizon (¢ > 0),

ds? ~ (1 - Ti) dr? + + 202,
T

€ T
ds? ~ —dr? + —de? + r2d03.
T4+ 9
Note both € and 7 are completely independent of €2 so the space near the horizon neatly
separates into a sphere S? of radius r, and a two-dimensional manifold of metric

g T
ds2 = —dr? + —“de?
T+

To understand this manifold, change coordinates to p = 2,/r;¢ and x = ﬁ to get
ds? = p*dx? + dp?

which is similar to polar coordinates but x is not restricted to be between 0 and 27.
The resulting spacetime is a cone (the circumference of a closed curve with constant p
is not 27p). We want to eliminate the conical singularity. If it is to be a plane, x must
be between 0 and 27 so 7 must be between 0 and 47r.. Recall that periodic imaginary
time is an attribute of statistical systems of temperature 7" which is the iverse period.
Thus the black hole has temperature

11
~dnr,  87GM

T

which is the Hawking temperature. It looks like we have a statistical system, but what
are the states? In thermodynamics, dU = T'dS where U is the total energy; in this

case, it must be the mass. Thus dM = ﬁdS which means

drrd Ay

— — 2 _ -
S—/SWGMdM—47TGM =10 — 1



Schwarzschild black hole

where A is the area of the horizon; this is the Bekenstein-Hawking formula. It is

remarkably universal.

Normally entropy is proportional to volume and therefore mass (in an ordinary star

with N particles and n degrees of freedom, there are n'¥ possible states so entropy S is

proportional to N In n which is proportional to mass M (and volume) so we have two

surprises: the entropy is proportional to surface area (the first hint of holography) and

to the square of the mass. Also as T' — 0, the number of states usually goes to one so

S — 0, but, in this case, T = ﬁ soas T — 0, M — oo : entropy is increasing.

The relation between temperature and mass implies that the heat capacity is given by
C:%:—SWGM2<O

which is an unstable thermodynamic system.

Introduce the partition function with the Euclidean action Sg

Z = / [dg] e 57 m =91,

which should be quantum gravity. If the Ricci scalar R = 0 then S;; = 0 but we had
better be careful. The Ricci tensor is a second derivative and the Lagrangian should be
independent of second order and higher derivatives. We can integrate by parts but we
must keep the surface terms at R > r and let R — oo at the end.

1
Ssurface = 787TG dSCE\/EK

sur face

(York-Gibbons-Hawking action) where K = trK,, is the extrinsic curvature of the
surface and

1
Kuy = 7nagaﬁaﬁguu

2
(nh = \/%(W is the unit vector perpendicular to the surface).
GM 2GM
KTT = ——F/1—-——
R? R

[ 2GM
Kop = Ry[1- ==
Koo = Rsin29,/1—2GTM

hrr = f(R) hgg = R? hyp = R*sin® 0
Then
1 1/T 27 i f
Ssu’r ace — TS5~ d d dovV hK
! 871G Jo ! /0 v /0
_ 2R — 3GM

2GT
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which is the classical action.

It diverges as R — oc. But in order to properly define it, we need to introduce a ref-
erence point. We shall subtract the contribution of empty space. The latter is obtained
by setting M = 0. However, there is a complication. We obtained the temperature
in the case M # 0 by demanding that there be no conical singularity. There is no
such constraint in empty space (M = 0). Instead, we shall match the boundaries of
the two spaces (at r = R). The time direction at r = R for the black hole has length
%/Grr = %/ f(R). If we make time periodic with period 1/T for M = 0, then that
will be its length at any 7. We need to match

1 1 1 2GM
= =,/ — — /1 - ==
o T F(R) T R
i.e., choose the temperature of empty space to be Tj (red-shifted). Then

g, _ _2R-3GM R
S 2GT GT

B _2R—3GM+£ /1_2GM
- 2GT GT R

3M M
= = _= 1

M
oT

Now

since ;. = 2G M. Therefore,

as expected.

Can we understand the entropy microscopically by counting degrees of freedom? This
is hard at finite temperature. It is easier to ask the question in the limit 7" — 0 because
the system then settles to its ground state. The problem is that in this limit, M — oo,
so this limit is hard to understand. We need a better black hole.





