LECTURE 2

Schwarzschild black hole

Spacetime is provided with a metric tensor $g_{\mu\nu}$ so that a line element has length

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

In flat spacetime, $ds^2=-dt^2+d\mathbf{x}^2$ ($\mathbf{x}\in\mathbb{R}^3$), so $g_{\mu\nu}=\eta_{\mu\nu}=\mathrm{diag}(-1\ 1\ 1\ 1)$ as a matrix. We denote the determinant of $g_{\mu\nu}$ by g. The Einstein equations are

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \left\{ \begin{array}{cc} 0 & , & \text{with just gravity not matter} \\ source & , & \text{in the presence of matter} \end{array} \right. .$$

 $R_{\mu\nu}$ is the Ricci tensor (the contracted curvature tensor $R^{\nu}_{\mu\nu\rho}$) and $R=R^{\mu}_{\mu}$ (its trace) is the Ricci scalar. $R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=0$ arises from the action

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} R.$$

If we take the trace of the Einstein equation in empty space, we get

$$R^{\mu}_{\mu} - \frac{1}{2}Rg^{\mu}_{\mu} = 0$$

which implies R=0 so $R_{\mu\nu}=0$. Schwarzschild found the solution

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\Omega_{2}^{2}$$

where $d\Omega_2^2=d\theta^2+\sin^2\theta d\varphi^2$ is the line element on the sphere S^2 and

$$f(r) = 1 - \frac{2GM}{r}$$

Where do G and M come from?

Compare to electromagnetism with Maxwell's equations without currents

$$\partial_{\mu}F^{\mu\nu} = 0.$$

Its simplest symmetric solution is $A_{\mu}=(A_0,\mathbf{0})$ with $\nabla^2 A_0=0$ so $A=\frac{Q}{r}$, i.e. the Coulomb potential. Q turns out to be the charge by Gauss's law. In General Relativity, we can read off the mass from

$$g_{tt} \approx -1 + 2V(r)$$

if V(r) is small (i.e., when $r \to \infty$), where V(r) is the Newtonian potential (V(r) = GM/r).

In the Schwarzschild solution f(r) diverges as $r \to 0$ which is a true singularity. There is also a singularity (which is an artifact of the coordinate system) at $r = 2GM \equiv r_+$ which is called the horizon. While not a coordinate singularity, the horizon is significant because inside $(r < r_+)$ not even light can escape. Since $f(r_+) = 0$, proper time for an observer approaching the horizon $(\sqrt{-ds^2} = \sqrt{f(r)}dt)$ passes quickly while to a distant observer it appears to take an infinite time to reach the horizon.

Now let us define $\tau=it$ so Minkowski space becomes Euclidean ($ds^2=d\tau^2+d\mathbf{x}^2$) and the Schwarzschild metric becomes

$$ds^2 \approx \left(1 - \frac{r_+}{r}\right) d\tau^2 + \frac{dr^2}{\left(1 - \frac{r_+}{r}\right)} + r^2 d\Omega_2^2.$$

When $r = r_+ + \varepsilon$ is outside but close to the horizon ($\varepsilon > 0$),

$$ds^2 \approx \frac{\varepsilon}{r_{\perp}} d\tau^2 + \frac{r_{+}}{\varepsilon} d\varepsilon^2 + r_{+}^2 d\Omega_2^2.$$

Note both ε and τ are completely independent of Ω so the space near the horizon neatly separates into a sphere S^2 of radius r_+ and a two-dimensional manifold of metric

$$ds_2^2 = \frac{\varepsilon}{r_+} d\tau^2 + \frac{r_+}{\varepsilon} d\varepsilon^2$$

To understand this manifold, change coordinates to $\rho=2\sqrt{r_+\varepsilon}$ and $\chi=\frac{\tau}{2r_+}$ to get

$$ds_2^2 = \rho^2 d\chi^2 + d\rho^2$$

which is similar to polar coordinates but χ is not restricted to be between 0 and 2π . The resulting spacetime is a cone (the circumference of a closed curve with constant ρ is not $2\pi\rho$). We want to eliminate the conical singularity. If it is to be a plane, χ must be between 0 and 2π so τ must be between 0 and $4\pi r_+$. Recall that periodic imaginary time is an attribute of statistical systems of temperature T which is the iverse period. Thus the black hole has temperature

$$T = \frac{1}{4\pi r_+} = \frac{1}{8\pi GM}$$

which is the Hawking temperature. It looks like we have a statistical system, but what are the states? In thermodynamics, dU=TdS where U is the total energy; in this case, it must be the mass. Thus $dM=\frac{1}{8\pi GM}dS$ which means

$$S = \int 8\pi G M dM = 4\pi G M^2 = \frac{4\pi r_+^2}{4G} = \frac{A_+}{4G}$$

Schwarzschild black hole

9

where A_+ is the area of the horizon; this is the Bekenstein-Hawking formula. It is remarkably universal.

Normally entropy is proportional to volume and therefore mass (in an ordinary star with N particles and n degrees of freedom, there are n^N possible states so entropy S is proportional to $N \ln n$ which is proportional to mass M (and volume) so we have two surprises: the entropy is proportional to surface area (the first hint of holography) and to the square of the mass. Also as $T \to 0$, the number of states usually goes to one so $S \to 0$, but, in this case, $T = \frac{1}{8\pi GM}$ so as $T \to 0$, $M \to \infty$: entropy is increasing. The relation between temperature and mass implies that the heat capacity is given by

$$C = \frac{dM}{dT} = -8\pi GM^2 < 0$$

which is an unstable thermodynamic system.

Introduce the partition function with the Euclidean action S_E

$$Z = \int [dg] e^{-S_E} \approx e^{-S_{cl}}.$$

which should be quantum gravity. If the Ricci scalar R=0 then $S_{cl}=0$ but we had better be careful. The Ricci tensor is a second derivative and the Lagrangian should be independent of second order and higher derivatives. We can integrate by parts but we must keep the surface terms at $R>r_+$ and let $R\to\infty$ at the end.

$$S_{surface} = -\frac{1}{8\pi G} \int_{surface} d^3x \sqrt{h} K$$

(York-Gibbons-Hawking action) where $K=trK_{\mu\nu}$ is the extrinsic curvature of the surface and

$$K_{\mu\nu} = \frac{1}{2} n_{\alpha} g^{\alpha\beta} \partial_{\beta} g_{\mu\nu}$$

 $(n^{\mu}_{\alpha} = \frac{1}{\sqrt{q_{rr}}} \delta^{\mu}_{r})$ is the unit vector perpendicular to the surface).

$$K_{\tau\tau} = -\frac{GM}{R^2} \sqrt{1 - \frac{2GM}{R}}$$

$$K_{\theta\theta} = R\sqrt{1 - \frac{2GM}{R}}$$

$$K_{\varphi\varphi} = R\sin^2\theta \sqrt{1 - \frac{2GM}{R}}$$

$$h_{\tau\tau} = f(R) h_{\theta\theta} = R^2 h_{\varphi\varphi} = R^2 \sin^2\theta$$

Then

$$\begin{split} S_{surface} &= -\frac{1}{8\pi G} \int_0^{1/T} d\tau \int_0^{2\pi} d\varphi \int_0^{\pi} d\theta \sqrt{h} K \\ &= -\frac{2R - 3GM}{2GT} \end{split}$$

which is the classical action.

It diverges as $R \to \infty$. But in order to properly define it, we need to introduce a reference point. We shall subtract the contribution of empty space. The latter is obtained by setting M=0. However, there is a complication. We obtained the temperature in the case $M \neq 0$ by demanding that there be no conical singularity. There is no such constraint in empty space (M=0). Instead, we shall match the boundaries of the two spaces (at r=R). The time direction at r=R for the black hole has length $\frac{1}{T}\sqrt{g_{\tau\tau}} = \frac{1}{T}\sqrt{f(R)}$. If we make time periodic with period $1/T_0$ for M=0, then that will be its length at any r. We need to match

$$\frac{1}{T_0} = \frac{1}{T}\sqrt{f(R)} = \frac{1}{T}\sqrt{1 - \frac{2GM}{R}}$$

i.e., choose the temperature of empty space to be \mathcal{T}_0 (red-shifted). Then

$$S_{cl} = -\frac{2R - 3GM}{2GT} + \frac{R}{GT_0}$$

$$= -\frac{2R - 3GM}{2GT} + \frac{R}{GT}\sqrt{1 - \frac{2GM}{R}}$$

$$= \frac{3M}{2T} - \frac{M}{T} + \mathcal{O}(1/R)$$

$$= \frac{M}{2T}$$

Now

$$F = U - TS$$

$$= M - TS$$

$$= M - \frac{1}{8\pi GM} \frac{\pi r_+^2}{G}$$

$$= M - \frac{1}{8\pi GM} \frac{4\pi G^2 M^2}{G}$$

$$= \frac{1}{2}M$$

since $r_+ = 2GM$. Therefore,

$$S_{cl} = \frac{F}{T}$$

as expected

Can we understand the entropy microscopically by counting degrees of freedom? This is hard at finite temperature. It is easier to ask the question in the limit $T\to 0$ because the system then settles to its ground state. The problem is that in this limit, $M\to \infty$, so this limit is hard to understand. We need a better black hole.