LECTURE 1

Path Integral

1.1 Quantum Mechanics

Set i = 1. Given a particle described by coordinates (g, ¢) with initial and final coor-
dinates of (¢;,t;) and (g, ty), the amplitude of the transition is

(gisti lag,ty) = (¥ lag, tr) =" (ar. ty) -
where 1 satisfies the Schrodinger equation

oy 1 0%

Yot T " 2m dq?
Feynman introduced the path integral formalism
(atiarts) = [ g~
q(ti)=q:,q(tf)=ay

where S = [ dtL is the action and L = L(q, ¢) is the Lagrangian, e.g.,

L
L= 5”“]2 - V(g)

We convert to imaginary time via the Wick rotation 7 = 4t so
1,
L— —5md - Vig)=—-Lg
where the derivative is with respect to 7, L is the total energy (which is bounded

below), and the subscript £ stands for Euclidean. The action becomes iS — Sg =
[ drLg so the path integral becomes

/ [dg]e™%% .
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The major contribution to the path integral’s value comes from minimum Sg, i.e.,
65 =0

i.e., from the classical trajectory ¢ = g (7).
Consider a perturbation of the classical trajectory

q(t) = qa(r)+6q(7)
S Se + ...

/[dq] e = e‘scl/[dq] o

(gisti |ap.ty) ~ e 5

The correlators are

(6,7 |Tg (1) q(12) -~ -1[ar,7y) =/ [dg)q(r1) q(2) - e 57
q(7:)=qi,q(T¢)=qs (LLD)

where T' denotes a time ordered product. Notice that the path integral automatically
takes care of time ordering. This can easily be seen by splitting the path integral into
time intervals bounded by 71, 72, .. ..

We are interested in the vacuum expectation values

G(t1,72,...) ={0|T[q(71) q(72) ---]|0) . (1.1.2)

To write them in terms of a path integral, notice that by using the time evolution oper-
ator, we have

lag, 7¢) =€ |qr,0) (1.1.3)
where H is the Hamiltonian with eigenstates |n); H |n) = E,, |n) and we take Fy = 0
(not necessary). Inserting the identity T =" |n) (n| in equation (1.1.3),

states

‘qf'v7_f> = :g:: e__TflE” 7l> <7I | af, 0>

states

we see that in the limit 7 — o0, all terms but one vanish. Therefore,

lag,7r) —10) 0| gz, 0)

Similarly, (g;, 7;| — (¢;,00) (0] as 7; — —oo. Substituting these limiting expres-
sions into equation (1.1.1) gives

(01T [q (1) (r2)---110) (¢, 01 0) (0 | 45, 0) = [ldglq(r1)q(r2) ... e=F

(010)(q,010)(0]q,0) = [ [dg]e=5"
T 72) ...e” 5
G(Tl,TQ,...) = f[dq]q(jﬁg](ef_)g]ﬂ £

where we integrate over all trajectories ¢(7) with 7 € (—o0, +00) and no specified end
points.
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1.2 Statistical Mechanics

Set the Boltzmann constant kg = 1. Denote temperature by 7" > 0; At T" = 0 the
system settles in the ground state. Vacuum expectation values correspond to 7" = 0.
To study finite 7, introduce the partition function

Z = ZeiE”/T

states

= 2 (o)

states

= Z Tr (e_H/T |n) (n\)

states

= Tr (e*H/T)

/dq <q,0 efH/T’ q,0>

/dq (¢,01¢,1/T)

= / dg / [dq'] e~ 5%
7' (0)=q'(1/T)=q

= / [dg] e~ 5"
4(0)=q(1/T)

Therefore, the partition function is given by a path integral over periodic orbits of
period 1/T.

Example 1 Quantum mechanics: consider a free particle V.= 0 and L = %mq2.

Then using path integrals

m 2
iy Li ty) = —m(qs—qi)?/2(T5—74)
<q ) |Qf7 f> 27T(Tf—7'i)e

Example 2 Statistical mechanics: Set 7, =0, 7y = 1/T, and ¢; = q5 = q.

[mT
Z = /dq 77217 which is in finite so put thesystem in a box
i
mT

= Vy/ o where V is the volume (length).
i

which is the same as

7z = V/Oo W v /2m
27

mT

2

— 00
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1.3 Thermodynamics

1.3.1 Canonical ensemble
Expand the partition function around the classical trajectory to get
Z =e Sat = o F/T
where F' is the Helmholtz free energy so
F=5,T.

The probability of a state |n) is p, = e~ /7. The internal energy is

U = (E)
= Z ann
states
0(InZ2)
= 72 2
oT
The entropy is
0(InZ2) U F
= nInp, =T —InZ=—-—
s S;Sp np or YT T T
which means
F=U-TS.

1.3.2 Microcanonical ensemble

The microcanonical ensemble is isolated from its environment. The number of states
with a given energy E is given by the multiplicity g(E) = e5(¥), i.e., the entropy
counts the number of different states.

zZ = Y e PTyE

energy levels

g(Eo)e /T
5 (Eo)—Eo/T

Q

where Ey maximizes S(E) — E/T. We deduce 22 = 1.

1.4 Field Theory

Set the speed of light ¢ = 1. Let a* = (¢, x) be the position 4-vector. Consider a real
field p(z) with dynamics governed by the action S = [ d*zL where £ (9,,¢, ¢) is the
Lagrangian density; the Lagrangian is L = [ d3x L. Use the Wick rotation 7 = it so



1.4 Field Theory

ds? = —dt? + d2® = dr? + d2* = ds?% (Euclidean continuation). The correlation
functions or Green functions are

G(z1,x9,...) 0|7 (p(a1)p(x2)--+)|0)
f [d@} ' (1171) %) (552) ... e SE

[ ldgle=5e

as before. Taking an arbitrary function .J as a source current, the generating functional

is given by
Z[J] = /[d(p] (e—SE+fd4a:Jga)
and
G(z1,x2....) = 0 d e Z 1) (1.4.1)
6J(x1) 6J(w2) J=0

Example 3 For a free field of mass m,

1 1
Lp= 5(8#@2 + §m2¢2 +Jé

The classical field equation is the Klein-Gordon equation
_v2¢cl + m2¢cl =J

Writing a quantum field as
¢) = d)cl + 5¢
we obtain

Sp = Su+S?(68) , Su= / 4L (Duty bur)

Notice that there is no linear terms, because it is proportional to the field equation.
Then
Z[J] = eS¢

where we omitted a constant which was independent of J. We have
Sy = %/d4xd4x'J(x)DE(x,J;’)J(x')
where D is the propagator,
(=V2+m?)Dg(z,z') = 6*(x — 2')
Using (1.4.1), we easily deduce
G(z1,x2) = Dp(x1,x2)

You are invited to check that this is still valid when interactions are included.
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