
LECTURE 1

Path Integral

1.1 Quantum Mechanics

Set ~ = 1. Given a particle described by coordinates (q, t) with initial and final coor-
dinates of (qi, ti) and (qf , tf ), the amplitude of the transition is

〈qi, ti | qf , tf 〉 = 〈ψ |qf , tf 〉 = ψ∗ (qf , tf ) .

where ψ satisfies the Schrödinger equation

i
∂ψ

∂t
= − 1

2m
∂2ψ

∂q2
.

Feynman introduced the path integral formalism

〈qi, ti | qf , tf 〉 =
∫

q(ti)=qi,q(tf )=qf

[dq] e−iS

where S =
∫
dtL is the action and L = L(q, q̇) is the Lagrangian, e.g.,

L =
1
2
mq̇2 − V (q)

We convert to imaginary time via the Wick rotation τ = it so

L→ −1
2
mq̇2 − V (q) ≡ −LE

where the derivative is with respect to τ , LE is the total energy (which is bounded
below), and the subscript E stands for Euclidean. The action becomes iS → SE =∫
dτLE so the path integral becomes

∫
[dq] e−SE .
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The major contribution to the path integral’s value comes from minimum SE , i.e.,

δS = 0

i.e., from the classical trajectory q = qcl(τ).
Consider a perturbation of the classical trajectory

q(τ) = qcl (τ) + δq (τ)
S = Scl + ...∫

[dq] e−SE = e−Scl

∫
[dq] e− ...

〈qi, ti | qf , tf 〉 ≈ e−Scl

The correlators are

〈qi,τ i |T [q (τ1) q (τ2) · · · ]| qf,τf 〉 =
∫

q(τ i)=qi,q(τf )=qf

[dq] q (τ1) q (τ2) · · · e−SE

(1.1.1)
where T denotes a time ordered product. Notice that the path integral automatically
takes care of time ordering. This can easily be seen by splitting the path integral into
time intervals bounded by τ1, τ2, . . . .
We are interested in the vacuum expectation values

G(τ1, τ2, . . . ) = 〈0 |T [q (τ1) q (τ2) · · · ]| 0〉 . (1.1.2)

To write them in terms of a path integral, notice that by using the time evolution oper-
ator, we have

|qf , τf 〉 = e−τf H |qf , 0〉 (1.1.3)

where H is the Hamiltonian with eigenstates |n〉; H |n〉 = En |n〉 and we take E0 = 0
(not necessary). Inserting the identity I =

∑
states |n〉 〈n| in equation (1.1.3),

|qf , τf 〉 =
∑

states

e−τf En |n〉 〈n | qf , 0〉

we see that in the limit τf →∞, all terms but one vanish. Therefore,

|qf , τf 〉 → |0〉 〈0 | qf , 0〉
Similarly, 〈qi, τ i| → 〈qi, 0 | 0〉 〈0| as τ i → −∞. Substituting these limiting expres-
sions into equation (1.1.1) gives

〈0 |T [q (τ1) q (τ2) · · · ]| 0〉 〈qi, 0 | 0〉 〈0 | qf , 0〉 =
∫

[dq] q (τ1) q (τ2) ... e−SE

〈0 | 0〉 〈q, 0 | 0〉 〈0 | q, 0〉 =
∫

[dq] e−SE

G(τ1, τ2, . . . ) =
R

[dq]q(τ1)q(τ2) ... e−SER
[dq]e−SE

where we integrate over all trajectories q(τ) with τ ∈ (−∞,+∞) and no specified end
points.
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1.2 Statistical Mechanics

Set the Boltzmann constant kB = 1. Denote temperature by T ≥ 0; At T = 0 the
system settles in the ground state. Vacuum expectation values correspond to T = 0.
To study finite T , introduce the partition function

Z =
∑

states

e−En/T

=
∑

states

〈
n

∣∣∣e−H/T
∣∣∣n

〉

=
∑

states

Tr
(
e−H/T |n〉 〈n|

)

= Tr
(
e−H/T

)

=
∫
dq

〈
q, 0

∣∣∣e−H/T
∣∣∣ q, 0

〉

=
∫
dq 〈q, 0 | q, 1/T 〉

=
∫
dq

∫

q′(0)=q′(1/T )=q

[dq′] e−SE

=
∫

q(0)=q(1/T )

[dq] e−SE

Therefore, the partition function is given by a path integral over periodic orbits of
period 1/T .

Example 1 Quantum mechanics: consider a free particle V = 0 and L = 1
2mq̇

2.
Then using path integrals

〈qi, ti | qf , tf 〉 =
√

m

2π(τf − τ i)
e−m(qf−qi)

2/2(τf−τ i)

Example 2 Statistical mechanics: Set τ i = 0, τf = 1/T , and qi = qf = q.

Z =
∫
dq

√
mT

2π
which is infinite so put thesystem in a box

= V

√
mT

2π
where V is the volume (length).

which is the same as

Z = V

∫ ∞

−∞

dp

2π
e−p2/2m

= V

√
mT

2π
.
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1.3 Thermodynamics

1.3.1 Canonical ensemble

Expand the partition function around the classical trajectory to get

Z = e−Scl+ ... = e−F/T

where F is the Helmholtz free energy so

F = SclT .

The probability of a state |n〉 is pn = 1
Z e

−En/T . The internal energy is

U = 〈E〉
=

∑
states

pnEn

= T 2 ∂ (lnZ)
∂T

The entropy is

S =
∑

states

pn ln pn = T
∂ (lnZ)
∂T

− lnZ =
U

T
− F

T

which means
F = U − TS .

1.3.2 Microcanonical ensemble

The microcanonical ensemble is isolated from its environment. The number of states
with a given energy E is given by the multiplicity g(E) = eS(E), i.e., the entropy
counts the number of different states.

Z =
∑

energy levels

e−E/T g(E)

≈ g(E0)e−E0/T

= eS(E0)−E0/T

where E0 maximizes S(E)− E/T . We deduce ∂S
∂E = 1

T .

1.4 Field Theory

Set the speed of light c = 1. Let xµ = (t,x) be the position 4-vector. Consider a real
field ϕ(x) with dynamics governed by the action S =

∫
d4xL where L (∂µϕ,ϕ) is the

Lagrangian density; the Lagrangian is L =
∫
d3xL. Use the Wick rotation τ = it so
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ds2 = −dt2 + dx2 = dτ2 + dx2 = ds2E (Euclidean continuation). The correlation
functions or Green functions are

G(x1, x2, . . . ) = 〈0 |T (ϕ(x1)ϕ(x2) · · · )| 0〉

=
∫

[dϕ]ϕ (x1)ϕ (x2) · · · e−SE∫
[dϕ] e−SE

as before. Taking an arbitrary function J as a source current, the generating functional
is given by

Z [J ] =
∫

[dϕ]
(
e−SE+

R
d4xJϕ

)

and

G(x1, x2. . . . ) =
δ

δJ(x1)
δ

δJ(x2)
· · · Z [J ]

∣∣∣∣
J=0

(1.4.1)

Example 3 For a free field of mass m,

LE =
1
2
(∂µφ)2 +

1
2
m2φ2 + Jφ

The classical field equation is the Klein-Gordon equation

−∇2φcl +m2φcl = J

Writing a quantum field as
φ = φcl + δφ

we obtain
SE = Scl + S(2)(δφ) , Scl =

∫
d4LE(∂clµ, φcl)

Notice that there is no linear terms, because it is proportional to the field equation.
Then

Z[J ] = e−Scl

where we omitted a constant which was independent of J . We have

Scl =
1
2

∫
d4xd4x′J(x)DE(x, x′)J(x′)

where DE is the propagator,

(−∇2 +m2)DE(x, x′) = δ4(x− x′)

Using (1.4.1), we easily deduce

G(x1, x2) = DE(x1, x2)

You are invited to check that this is still valid when interactions are included.
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