

LECTURE 1

Path Integral

1.1 Quantum Mechanics

Set $\hbar = 1$. Given a particle described by coordinates (q, t) with initial and final coordinates of (q_i, t_i) and (q_f, t_f) , the amplitude of the transition is

$$\langle q_i, t_i | q_f, t_f \rangle = \langle \psi | q_f, t_f \rangle = \psi^*(q_f, t_f) .$$

where ψ satisfies the Schrödinger equation

$$i \frac{\partial \psi}{\partial t} = -\frac{1}{2m} \frac{\partial^2 \psi}{\partial q^2} .$$

Feynman introduced the path integral formalism

$$\langle q_i, t_i | q_f, t_f \rangle = \int_{q(t_i)=q_i, q(t_f)=q_f} [dq] e^{-iS}$$

where $S = \int dt L$ is the action and $L = L(q, \dot{q})$ is the Lagrangian, e.g.,

$$L = \frac{1}{2} m \dot{q}^2 - V(q)$$

We convert to imaginary time via the Wick rotation $\tau = it$ so

$$L \rightarrow -\frac{1}{2} m \dot{q}^2 - V(q) \equiv -L_E$$

where the derivative is with respect to τ , L_E is the total energy (which is bounded below), and the subscript E stands for Euclidean. The action becomes $iS \rightarrow S_E = \int d\tau L_E$ so the path integral becomes

$$\int [dq] e^{-S_E} .$$

The major contribution to the path integral's value comes from minimum S_E , i.e.,

$$\delta S = 0$$

i.e., from the classical trajectory $q = q_{cl}(\tau)$.

Consider a perturbation of the classical trajectory

$$\begin{aligned} q(\tau) &= q_{cl}(\tau) + \delta q(\tau) \\ S &= S_{cl} + \dots \\ \int [dq] e^{-S_E} &= e^{-S_{cl}} \int [dq] e^{-} \dots \\ \langle q_i, \tau_i | q_f, \tau_f \rangle &\approx e^{-S_{cl}} \end{aligned}$$

The correlators are

$$\langle q_i, \tau_i | T[q(\tau_1) q(\tau_2) \dots] | q_f, \tau_f \rangle = \int_{q(\tau_i)=q_i, q(\tau_f)=q_f} [dq] q(\tau_1) q(\tau_2) \dots e^{-S_E} \quad (1.1.1)$$

where T denotes a time ordered product. Notice that the path integral automatically takes care of time ordering. This can easily be seen by splitting the path integral into time intervals bounded by τ_1, τ_2, \dots .

We are interested in the vacuum expectation values

$$G(\tau_1, \tau_2, \dots) = \langle 0 | T[q(\tau_1) q(\tau_2) \dots] | 0 \rangle. \quad (1.1.2)$$

To write them in terms of a path integral, notice that by using the time evolution operator, we have

$$|q_f, \tau_f\rangle = e^{-\tau_f H} |q_f, 0\rangle \quad (1.1.3)$$

where H is the Hamiltonian with eigenstates $|n\rangle$; $H|n\rangle = E_n|n\rangle$ and we take $E_0 = 0$ (not necessary). Inserting the identity $\mathbb{I} = \sum_{states} |n\rangle \langle n|$ in equation (1.1.3),

$$|q_f, \tau_f\rangle = \sum_{states} e^{-\tau_f E_n} |n\rangle \langle n | q_f, 0\rangle$$

we see that in the limit $\tau_f \rightarrow \infty$, all terms but one vanish. Therefore,

$$|q_f, \tau_f\rangle \rightarrow |0\rangle \langle 0 | q_f, 0\rangle$$

Similarly, $\langle q_i, \tau_i | \rightarrow \langle q_i, 0 | 0\rangle \langle 0 |$ as $\tau_i \rightarrow -\infty$. Substituting these limiting expressions into equation (1.1.1) gives

$$\begin{aligned} \langle 0 | T[q(\tau_1) q(\tau_2) \dots] | 0 \rangle \langle q_i, 0 | 0\rangle \langle 0 | q_f, 0\rangle &= \int [dq] q(\tau_1) q(\tau_2) \dots e^{-S_E} \\ \langle 0 | 0\rangle \langle q_i, 0 | 0\rangle \langle 0 | q_f, 0\rangle &= \int [dq] e^{-S_E} \\ G(\tau_1, \tau_2, \dots) &= \frac{\int [dq] q(\tau_1) q(\tau_2) \dots e^{-S_E}}{\int [dq] e^{-S_E}} \end{aligned}$$

where we integrate over all trajectories $q(\tau)$ with $\tau \in (-\infty, +\infty)$ and no specified end points.

1.2 Statistical Mechanics

Set the Boltzmann constant $k_B = 1$. Denote temperature by $T \geq 0$; At $T = 0$ the system settles in the ground state. Vacuum expectation values correspond to $T = 0$. To study finite T , introduce the partition function

$$\begin{aligned}
 Z &= \sum_{\text{states}} e^{-E_n/T} \\
 &= \sum_{\text{states}} \langle n | e^{-H/T} | n \rangle \\
 &= \sum_{\text{states}} \text{Tr} (e^{-H/T} |n\rangle \langle n|) \\
 &= \text{Tr} (e^{-H/T}) \\
 &= \int dq \langle q, 0 | e^{-H/T} | q, 0 \rangle \\
 &= \int dq \langle q, 0 | q, 1/T \rangle \\
 &= \int dq \int_{q'(0)=q'(1/T)=q} [dq'] e^{-S_E} \\
 &= \int_{q(0)=q(1/T)} [dq] e^{-S_E}
 \end{aligned}$$

Therefore, the partition function is given by a path integral over periodic orbits of period $1/T$.

Example 1 Quantum mechanics: consider a free particle $V = 0$ and $L = \frac{1}{2}m\dot{q}^2$. Then using path integrals

$$\langle q_i, t_i | q_f, t_f \rangle = \sqrt{\frac{m}{2\pi(\tau_f - \tau_i)}} e^{-m(q_f - q_i)^2/2(\tau_f - \tau_i)}$$

Example 2 Statistical mechanics: Set $\tau_i = 0$, $\tau_f = 1/T$, and $q_i = q_f = q$.

$$\begin{aligned}
 Z &= \int dq \sqrt{\frac{mT}{2\pi}} \text{ which is infinite so put the system in a box} \\
 &= V \sqrt{\frac{mT}{2\pi}} \text{ where } V \text{ is the volume (length).}
 \end{aligned}$$

which is the same as

$$\begin{aligned}
 Z &= V \int_{-\infty}^{\infty} \frac{dp}{2\pi} e^{-p^2/2m} \\
 &= V \sqrt{\frac{mT}{2\pi}}.
 \end{aligned}$$

1.3 Thermodynamics

1.3.1 Canonical ensemble

Expand the partition function around the classical trajectory to get

$$Z = e^{-S_{cl}} + \dots = e^{-F/T}$$

where F is the Helmholtz free energy so

$$F = S_{cl}T.$$

The probability of a state $|n\rangle$ is $p_n = \frac{1}{Z} e^{-E_n/T}$. The internal energy is

$$\begin{aligned} U &= \langle E \rangle \\ &= \sum_{\text{states}} p_n E_n \\ &= T^2 \frac{\partial (\ln Z)}{\partial T} \end{aligned}$$

The entropy is

$$S = \sum_{\text{states}} p_n \ln p_n = T \frac{\partial (\ln Z)}{\partial T} - \ln Z = \frac{U}{T} - \frac{F}{T}$$

which means

$$F = U - TS.$$

1.3.2 Microcanonical ensemble

The microcanonical ensemble is isolated from its environment. The number of states with a given energy E is given by the multiplicity $g(E) = e^{S(E)}$, i.e., the entropy counts the number of different states.

$$\begin{aligned} Z &= \sum_{\text{energy levels}} e^{-E/T} g(E) \\ &\approx g(E_0) e^{-E_0/T} \\ &= e^{S(E_0) - E_0/T} \end{aligned}$$

where E_0 maximizes $S(E) - E/T$. We deduce $\frac{\partial S}{\partial E} = \frac{1}{T}$.

1.4 Field Theory

Set the speed of light $c = 1$. Let $x^\mu = (t, \mathbf{x})$ be the position 4-vector. Consider a real field $\varphi(x)$ with dynamics governed by the action $S = \int d^4x \mathcal{L}$ where $\mathcal{L}(\partial_\mu \varphi, \varphi)$ is the Lagrangian density; the Lagrangian is $L = \int d^3x \mathcal{L}$. Use the Wick rotation $\tau = it$ so

$ds^2 = -dt^2 + dx^2 = d\tau^2 + dx^2 = ds_E^2$ (Euclidean continuation). The correlation functions or Green functions are

$$\begin{aligned} G(x_1, x_2, \dots) &= \langle 0 | T(\varphi(x_1)\varphi(x_2) \dots) | 0 \rangle \\ &= \frac{\int [d\varphi] \varphi(x_1)\varphi(x_2) \dots e^{-S_E}}{\int [d\varphi] e^{-S_E}} \end{aligned}$$

as before. Taking an arbitrary function J as a source current, the generating functional is given by

$$Z[J] = \int [d\varphi] \left(e^{-S_E + \int d^4x J\varphi} \right)$$

and

$$G(x_1, x_2, \dots) = \frac{\delta}{\delta J(x_1)} \frac{\delta}{\delta J(x_2)} \dots Z[J] \Big|_{J=0} \quad (1.4.1)$$

Example 3 For a free field of mass m ,

$$\mathcal{L}_E = \frac{1}{2}(\partial_\mu\phi)^2 + \frac{1}{2}m^2\phi^2 + J\phi$$

The classical field equation is the Klein-Gordon equation

$$-\nabla^2\phi_{cl} + m^2\phi_{cl} = J$$

Writing a quantum field as

$$\phi = \phi_{cl} + \delta\phi$$

we obtain

$$S_E = S_{cl} + S^{(2)}(\delta\phi) , \quad S_{cl} = \int d^4\mathcal{L}_E(\partial_{cl\mu}, \phi_{cl})$$

Notice that there is no linear terms, because it is proportional to the field equation.

Then

$$Z[J] = e^{-S_{cl}}$$

where we omitted a constant which was independent of J . We have

$$S_{cl} = \frac{1}{2} \int d^4x d^4x' J(x) D_E(x, x') J(x')$$

where D_E is the propagator,

$$(-\nabla^2 + m^2)D_E(x, x') = \delta^4(x - x')$$

Using (1.4.1), we easily deduce

$$G(x_1, x_2) = D_E(x_1, x_2)$$

You are invited to check that this is still valid when interactions are included.

