Quantum Chemistry Benchmark for Quantum Computing

Jacek Jakowski
Alex McCaskey, Zach Parks, Shirley Moore, Raphael Pooser, Travis Humble

Oak Ridge National Laboratory

Beltsville, MD

This work is supported by the DOE Quantum Algorithms Teams, Quantum Testbed Pathfinder programs.
Introduction

Leadership Computing Facility (OLCF)

- Titan Architecture: Cray XK7
 (18,688 AMD Opteron 6274 16-core CPUs, 18,688 Nvidia Tesla K20X GPUs)
 17.59 petaFLOPS
- Ranking TOP500: #3, June 2016
- Summit (IBM): 200 PFLOPS (2018)

Spallation Neutron Source (SNS) & Center for Nanophase Material Science (CNMS)

- SNS is an accelerator-based neutron source in Oak Ridge
- The brightest neutron beam in the world
- Neutron scattering experiments
- User facility (semiannual calls)
Quantum Computing is a DOE priority

Ref. BES Roundtable report “Opportunities in Chemical in Materials Sciences, 2017
Opportunities in Chemical and Materials Sciences

- Controlling the Quantum Dynamics of Nonequilibrium Chemical and Materials Systems

Water-splitting reaction on a catalytic surface:
1. harvesting light energy to form charge carriers
2. proton-coupled electron transfer (PCET) processes
3. multiple pathways, and excited states
4. time-dependent Schrödinger equation (non-adiabatic)
5. unfeasible with classical computers.

- Embedding Quantum Hardware in Classical Frameworks

- Hybrid model and computing
- Separation of problem between “easy” and “hard” part
- Interfacing

Ref. BES Roundtable report “Opportunities in Chemical in Materials Sciences, 2017
Quantum chemistry hierarchy: Pople diagram

Relation between basis set and levels of theory typically used in quantum chemistry.

Level of Theory

```
HF/SCF  MP2  MP4  CCSD (T)  CCSD (T)-F12  FULL CI

Increasing description of electron correlation
- Double excitations
- Perturbative of triple excitations

Larger basis set increases flexibility to describe wave function/ electron density
- Valence electrons
- Diffusion function
- Polarization function
- Higher-angular momentum orbitals

Increasing an accuracy Increasing CPU time

EXACT
```

Basis Set (Atomic Orbitals)

- Pople basis set
 - 6-31G(d)
 - 6-31+G(d,p)
 - 6-311++G(2df,pd)
- Dunning basis sets
 - (aug)-cc-pVDZ
 - (aug)-cc-pVTZ
 - (aug)-cc-pVQZ
- Infinite Basis set

https://en.wikipedia.org/wiki/Pople_diagram
Recent work (IBM group)

Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets

Abhinav Kandala1*, Antonio Mezzacapo1*, Kristan Temme1, Maika Takita1, Markus Brink1, Jerry M. Chow1 & Jay M. Gambetta1

Recent Related Work

<table>
<thead>
<tr>
<th>Authors</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kandala et. al.</td>
<td>Hardware efficient VQE for small molecules and quantum magnets</td>
<td>Uses hardware-efficient trial state consisting of alternating layers of Euler rotations and entanglers. Applied to H_2, LiH, and BeH$_2$</td>
</tr>
<tr>
<td>Kandala et. al.</td>
<td>Extending the computational reach of a noisy supercomputing quantum processor</td>
<td>Extends Kandala 2017 with readout error correction and zero-noise error extrapolation, which enables increasing the levels of entanglement</td>
</tr>
<tr>
<td>Ryabinkin et. al.</td>
<td>Qubit coupled-cluster method</td>
<td>Uses energy response estimators for ranking importance of entanglers; Ground state energy of H_2 and LiH numerically calculated to chemical accuracy.</td>
</tr>
<tr>
<td>Ryabinkin et. al.</td>
<td>Constrained variational quantum eigensolver</td>
<td>Adds a penalty functional with constraining operators to the Hamiltonian, which eliminates kinks in the PSE; demonstrated on Rigetti hardware for H_2 and H_2^0</td>
</tr>
<tr>
<td>Romero et. al.</td>
<td>Strategies of quantum computing molecular energies using the unitary coupled cluster ansatz</td>
<td>Reduce parameters and qubits through 1) pre-screening of cluster amplitudes, 2) active space approximation</td>
</tr>
<tr>
<td>Bonet-Monroig et.</td>
<td>Low-cost error mitigation by symmetry verification</td>
<td>Inserts symmetries into circuits for error mitigation; order of magnitude error reduction for H_2 ground state dissociation curve (using simulator)</td>
</tr>
</tbody>
</table>
Motivation for quantum chemistry benchmark

- Diversity of Quantum Processing Units (QPU):
 - superconducting, ion traps, optical, …

- Progress measures in hardware specific metrics:
 - capacity of the quantum register
 - fidelity of the available instructions
 - connectivity between register elements
 - depth and width of quantum program execution
 - coherence times / accuracy in observing the generated outcome

- How does this translates to practical use?
 - gap between domain and quantum computer scientists / hardware vendors
 - set of quantum chemistry problems ➔ guideline for the development
 - XACC ➔ aid the transition between quantum and classical computing
XACC (eXtreme-scale ACCelerator) software framework

- Alex Mc Caskey (computer scientist)
mccaskeyaj@ornl.gov
Quantum Programming Landscape

IBM QPU(s)

Rigetti QPU(s)

Google QPU(s)

D-Wave QPU(s)

Aqua

Grove

PyQuil

Quil

Openfermion (probably spans more)

Cirq

Google low-level instruction set

D-Wave Ocean

D-Wave SAPI

D-Wave QMI

Terra

OpenQasm

(+ others)
Quantum Programming Landscape - What Challenges arise here?

- **Lack of code portability**
 - Users must re-express codes/programs in the vendor’s DSL (python data structures)
 - Users have to learn N-frameworks for N QPUs
- **Lack of Integration**
 - Simulator from Vendor X not immediately usable from code written for Vendor Y
- **Lack of in-line error mitigation** tools
 - Left as onerous post-processing task for user
- **Very difficult to enable benchmark suite across QPUs**
 - see above lack of code portability…
- **Requires N*M compilers for N QPLs and M QPUs**
- **Oh yea, and the access model**
 - Remote (makes sense, scarce resource)
 - Queue single QPU executions (ouch)
Learn from classical compiler architectures

- Code portability and integration are no problem
- Error mitigation through operations on the IR and Backend Decoration
- Benchmarking possible since backend hardware is abstracted away.
- Requires N compilers to map to M QPUs
import xacc

xacc.Initialize()

xacc.setOptions({'ibm-backend': 'ibmq_20_tokyo',
 'ro-error-file': 'READOUTERROR_FILE.json'})

Get access to the Accelerator you want
Can be ibm, rigetti, tnqvm, local-ibm, etc...
qpu = xacc.getAccelerator('ibm')

Allocate some qubits to execute on
This is the AcceleratorBuffer instance
qubits = qpu.createBuffer('q', 2)

To turn on Readout-Error correction, decorate
the Accelerator with the ro-error AcceleratorDecorator
qpu = xacc.getAcceleratorDecorator('ro-error', qpu)

Annotate functions that are to be
run on the QPU
@xacc.qpu(accelerator=qpu)
def entangle(buffer):
 H(0)
 CNOT(0, 1)
 Measure(0, 0)
 Measure(1, 1)

Execute, gather results
entangle(qubits)

Print the bit counts
print('Counts: ', qubits.getMeasurementCounts())

Print the whole buffer as JSON
print(qubits)

xacc.Finalize()
Extend Decorators for Algorithmic Primitives like VQE

```python
@vqe.qpu.vqe(accelerator=qpu, observable=h2_ham, optimizer='scipy-COBYLA', options={'disp': True, 'maxiter': 10, 'tol': 1e-4})
def uccsdH2(buffer, *args):
    xacc(uccsd, n_qubits=4, n_electrons=2)

uccsdH2(buffer, 0.0, -0.05)

print('VQE Energy = ', buffer.getInformation('vqe-energy'))
print('VQE Angles = ', buffer.getInformation('vqe-angles'))
print(buffer)
```
XACC Python JIT Compiler and the IRGenerator

• Goals
 – Provide a mechanism for programming complex circuits / QUBOs parameterized by high-level user input
• How’s it done?
 – PyXACCCompiler interprets custom xacc() instruction
 • first argument is the name of the IRGenerator
 • subsequent arguments are the list of user input
XACC documentation and information:

- Check the XACC project at:
 - https://github.com/eclipse/xacc
 - https://xacc.readthedocs.io

- Contact:
 - xacc-dev@eclipse.org,
 - mccaskeyaj@ornl.gov

- Funding: ORNL LDRD, DOE Testbed Pathfinder, DOE Quantum Algorithms Teams, DOE Early Career Research Program
Benchmarking Quantum Computers

• What is a quantum computing benchmark?
 – There is no **Linpack equivalent**
 – Propose algorithm and application specific benchmarks
 • VQE-based algorithms: QML, QChem, Nuclear Physics

• With wide **variety of QCs**, need a programing mechanism that spans available hardware
 – XACC was designed for this

• The need for an **executable benchmark suite**
 – Reproducible software across QCs
 – QC vendor downloads and executes suite to provide QC-specific metric analysis
 – PyQuil, Cirq, Qiskit don’t provide that

E? E_correlation? ...
Compared across QPUs?
Quantum chemistry benchmark

• XACC framework (Python API)
• Molecular systems: H$_2$, LiH, NaH, KH, RbH
• Ansatz circuits
• VQE optimizers
• Error mitigation techniques
Mapping a Chemistry Problem onto a Quantum Computer

Typical Chemistry Problem Workflow

1. Molecule Specification:
 - XYZ Coordinates
 - Spin Number of electrons
 - Discretization (Basis set / grid)

2. Integral Generation
 - Depends on basis set, often uses external software

3. Starter Calculation (e.g., Hartree-Fock
 - Integral basis change
 - Initial state preparation

4. Map to Qubits
 - Jordan-Wigner
 - Bravyi-Kitaev
 - ...

5. Select Problem and Algorithm
 - Energies, properties, etc.
 - Quantum phase estimation
 - Variational quantum eigensolver (and ansatz)

6. Map to Hardware

Ref. BES Roundtable report “Opportunities in Chemical in Materials Sciences, 2017"
General many-body problem for fermions (Hilbert spaces)

- Particles are spin $\frac{1}{2}$ fermions
- Many-body wave function is fully anti-symmetric
- Certain quantum numbers will be conserved
 - total angular momentum
 - Number of electrons
- Hamiltonian will be non-relativistic (usually)
- We (usually) work in second quantization

Fock space with N single particle states and A particles.

$$a_\alpha^+ |0\rangle = |1\rangle \quad a_\alpha |0\rangle = 0 \quad a_\alpha |1\rangle = |0\rangle \quad a_\alpha^+ |1\rangle = 0$$

$$a_\alpha^+ a_\beta^+ = -a_\beta^+ a_\alpha^+ \quad a_\alpha a_\beta = -a_\beta a_\alpha \quad a_\alpha^+ a_\beta + a_\beta a_\alpha^+ = \delta_{\alpha\beta}$$

$$|\Phi\rangle = a_1^+ a_2^+ \cdots a_A^+ |0\rangle = |11\cdots10000\rangle$$

$$1 = \sum_{\alpha=0}^{N-1} |\Psi_\alpha\rangle \langle\Psi_\alpha|; \langle\Psi_\alpha|\Psi_\beta\rangle = \delta_{\alpha\beta}$$
Example: 2 particles in 4 states

Many-body basis states

\[
|\Phi_0\rangle = |0000\rangle
|\Phi_1\rangle = |1000\rangle
|\Phi_2\rangle = |0100\rangle
|\Phi_3\rangle = |0010\rangle
|\Phi_4\rangle = |0001\rangle
|\Phi_5\rangle = |0000\rangle
\]

Hartree-Fock state

\[
I = 0 \quad a_2^+ a_1^+ |\Phi_0\rangle = |1100\rangle
I = 1 \quad a_3^+ a_1^+ |\Phi_0\rangle = |1010\rangle
I = 2 \quad a_4^+ a_1^+ |\Phi_0\rangle = |1001\rangle
I = 3 \quad a_3^+ a_2^+ |\Phi_0\rangle = |0110\rangle
I = 4 \quad a_4^+ a_2^+ |\Phi_0\rangle = |0101\rangle
I = 5 \quad a_4^+ a_3^+ |\Phi_0\rangle = |0011\rangle
\]

Correlated wave function:
linear combination of basis states

\[
|\Psi\rangle = (b_\alpha + b_{a_1}^{a_i} a_2^+ a_i + b_{a_2}^{abij} a_3^+ a_3^+ a_i a_j + \cdots) |\Phi_0\rangle
\]

\[
\langle \Psi|H|\Psi\rangle
\]

Solve for b's by diagonalizing the Hamiltonian matrix

\[
N = \text{number of single-particle states}
\]

\[
C(N,n) = \frac{N!}{(N-n)!n!}
\]

\[
C(100,10) = 1.7 \times 10^{13}
\]

\[
C(1000,100) = 6 \times 10^{139}
\]

Oops. These are HUGE numbers

Source: David Dean (ORNL)
Example: LiH, STO-3G basis set

LiH model:
- 4 electrons
- 6 orbitals
- 12 spinorbitals

Possible combinations:
- All electrons & orbitals: $\binom{12}{4} = 495$
- Freeze lowest 2e: $\binom{10}{2} = 45$
All electrons case:

\[H = H_0 + H_1 + H_2 \]
\[= H_0 + \sum_{p,q} p^+ q \cdot \tilde{h}_q^p + \frac{1}{4} \sum_{p,q,r,s} p^+ q^+ r s \cdot \tilde{g}_{sr}^{pq} \]

\(H_0 \) - nuclear repulsion (0-electrons)

\(h_p^q \) - core Hamiltonian (1-electron):
(kinetic energy + interaction with core ions)

\(g_{pq}^{rs} \) - antisymmetrized 2-electron repulsion integrals

\[\tilde{g}_{sr}^{pq} = \langle p, q|s, r \rangle - \langle p, q|r, s \rangle \]

Valence electrons - runs over all spin-orbitals

Frozen core approximation:

Valence electrons \(\to \) delocalized chemical bonding

Core electrons \(\to \) localized near nucleus, not really involved in chemistry

\[H = H_0' + H_1' + H_2' \]

\[H_0' = E_{nucl} + \sum_a \left(\tilde{h}_a^p + \frac{1}{2} \sum_b \tilde{g}_{ab} \right) \]

\[H_1' = \sum_{p,q} p^+ q \cdot \left(\tilde{h}_q^p + \frac{1}{2} \sum_a \tilde{g}_{a,q}^{aq} \right) \]

\[H_2' = \frac{1}{4} \sum_{p,q,r,s} p^+ q^+ r s \cdot \tilde{g}_{sr}^{pq} \]

excitations

mean field interaction with frozen electrons (new term)

p,q,r,s - active spin-orbitals

a,b - inactive spin-orbitals of frozen core
Requirements for UCCSD ansatz

Coupled–cluster (CC) methods ➔ gold standard method in quantum chemistry

Accuracy: HF < MPn < CC < Full Configuration Interaction (FCI)

<table>
<thead>
<tr>
<th>Molecule</th>
<th>No. of electrons</th>
<th>No. of spinorbitls STO-3G</th>
<th>FCI space size</th>
<th>UCCSD ansatz requirements</th>
<th>#params</th>
<th>#instructions</th>
<th>depth</th>
<th>#CNOTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiH(fc)*</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>158</td>
<td>101</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>LiH(fc)*</td>
<td>2</td>
<td>10</td>
<td>45</td>
<td>14</td>
<td>6,258</td>
<td>4,673</td>
<td>3,680</td>
<td></td>
</tr>
<tr>
<td>LiH</td>
<td>4</td>
<td>12</td>
<td>495</td>
<td>44</td>
<td>41,892</td>
<td>30,487</td>
<td>26,112</td>
<td></td>
</tr>
<tr>
<td>NaH</td>
<td>12</td>
<td>20</td>
<td>125,970</td>
<td>324</td>
<td>616,428</td>
<td>N/A</td>
<td>441,600</td>
<td></td>
</tr>
<tr>
<td>KH</td>
<td>20</td>
<td>28</td>
<td>3,108,105</td>
<td>860</td>
<td>2,213,940</td>
<td>N/A</td>
<td>1,710,080</td>
<td></td>
</tr>
<tr>
<td>RbH</td>
<td>38</td>
<td>48</td>
<td>6,540,715,896</td>
<td>4655</td>
<td>19,438,938</td>
<td>N/A</td>
<td>16,460,080</td>
<td></td>
</tr>
</tbody>
</table>
Benchmark (ongoing)

- Hydrogen-like molecules: LiH, NaH, KH, RbH with STO-3G basis
- Adjustable list of active orbitals (1 active orbital = 1 qubit)
- Frozen core Hamiltonian with 2 electrons, 4 orbital
- Ansatz:

UCC

HWE (HardWare Efficient)

Benchmark

- **Unitary Coupled Cluster Ansatz (UCC)**
 - primitive CC
 - one parameter (small search space)
 - not accurate (double excitation)
 - preserve symmetry ($N_{\text{electrons}}$)

 ![UCC Diagram]

- **Hardware Efficient Ansatz (HWE)**
 - “brute force”
 - can map to exact FCI energy
 - 20 parameters (large search space)
 - mixes states with different electron number

 ![HWE Diagram]

Benchmark results (ongoing)

- UCC requires a single parameter for 2 electrons, 4 orbitals (scan)
- Known energy ➔ hardware test

![Graphs of energy as a function of variational parameter φ for NaH, KH, and RbH on the reduced UCC ansatz on the 20-qubit IBM Tokyo QPU.](image)

The dependence of the energy as a function of the variational parameter φ for the reduced UCC ansatz on the 20-qubit IBM Tokyo QPU.
Variational Quantum Eigensolver

- Optimization method (classical): Nelder-Mead? Bayesian? Other?
- Starting point: Hartree-Fock? Perturbational amplitudes?
- Noiseless simulator

He atom, 6-311G basis (2 electrons, 6 spin orbitals)

Deuteron binding energy, UCCSD ansatz
Ref: Dumitrescu, PRL 120, 210501 (2018)
Summary

• XACC (eXtreme-scale ACCELERator) software framework.
• XACC follows a coprocessor machine model:
 - independent of the underlying quantum computing hardware
 - unified application programming interface.
 - enabling quantum programs to be executed on a variety of QPUs
• Metal hydrides: LiH, NaH, KH, RbH with STO-3G basis set
• Frozen core Hamiltonian and adjustable virtual space
• Test ansatizes, optimizers, error mitigation
• Exploit symmetries when possible
• Cross-disciplinary challenges ➔ teaming (knowledge transfer)!
• Bottleneck: Hardware ➔ noisy
Contributors

Jacek Jakowski (quantum chemistry) jakowskij@ornl.gov
Alex McCaskey (computer science)
Zach Parks (computer science student)
Shirley Moore (HPC, math)
Raphael Pooser (physics, quantum information)
Travis Humble (quantum information, theoretical chemistry)

Contacts and more information: https://quantum.ornl.gov

Thank you